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ABSTRACT

This short note presents an automatic data acquisition procedure for features extraction and it describes a technique for high-

resolution representation of planar textured surfaces.

1. Introduction

Telepresence and virtual visits of objects and interiors are new
multidisciplinary applications where photogrammetry methods
can be profitably used for various purposes. The qualifying
parameter of typical photogrammetric procedures is precision,
but in this text the main target is the photorealistisc rendition of
inspected objects and the use of as automatic procedures as
possible, hence simple and inexpensive.

This work describes a technique for high resolution
representation of textured planar surfaces such as frescoed walls
and large size paintings. Projective transformations are used for
registering and correcting the subimages before forming a large
size picture, as this approach waves from the use of a calibrated
camera. Metric information can be indirectly recovered from
images' particulars of known metric characteristics. Features
extraction is accomplished by a semiautomatic procedure and
the computation of the projective transformation coefficients is
performed by a numerically efficient method.

The technique achieves subpixel accuracy and it is practically
very effective since it offers very satisfactory results. The next
section describes the details of the feature extraction methods.
Section 3 consider the construction of the large size image from
the subimages. Section 4 draws conclusion and future work
directions.

2. Features extraction and matching

Automatic procedures are used in order to improve the precision
of first approximation matches which are manually performed.

The algorithm works over two windows WI and VV2 located
around the two points to be matched. The automatic procedure
identifies within 7, the subarea of size J¥, with texture, light

and shape characteristics closer to those of W2 with respect to
the minimum mean square error. It returns then point le which

is at the center of this sub-area, as a proposed match for Pz i

Other similarity criteria were tried in place of the mean square
of the differences, such as the local analysis of image's activity,
quantified by spatial moments of the various type, but final
results does not substantially differ form the one obtained by
mean square error.

An important fact is the color nature of images, for which each
one them is coded as a triplet of its R, G and B components.

The semiautomatic matching procedure is performed separately
on each of the three component images returning instance points

R . -
P with minimum mean square error &g for the red

G oo
component, P2 with minimum square error £ for the green

component and PzB with the minimum square error &5 for the
blue component.
The match of point P, is then evaluated as

P} =An-PF+2g Py + 2y P %))
le,.

AnrGp = / n—R’GI’B 2
j=RGB €;

Point Pz, is the convex combination of the points PZR PZG
PZB weighted according to weights which are inversely

proportional to errors £, &5 & . Clearly expression (2) does

not hold if some of the errors is exactly zero and the numerical
consistency of (1) and (2) is checked before returning the final
result.

The main assumption in this part of our work is that we
consider only a small change of intensity of colors between the
two images / and / " due to a small motion and no brightness
changes.

3. Mosaicing procedure

An exact projective transformation ® between two sets of

coplanar points, for which the homogeneous coordinates are
SX wx'

0=|sy and )" =| wy’ |, can be represented by matrix &

s w
and the following relationships:

0=0-0 3
6, 6, 0;

o=|6, 6, 6, “
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. 0,x+0,y+6,
0,x+6,y+6,

©)

It is important to note that ® is defined up to a scale factor so
its ninth component can be set to one. Rewriting previous

equations we can provide linear ones with respect to Hi 's:
x-x-60,+x-y-0,+x'-0,-x-6,-y-6,=0 )
y-x6,+y-y-6,+y -6, x-0;-y-6,=0 (8

Then, the LMS solution of this linear system yields estimate of
projective transformation parameters:

-x -y =1 0 0 0 xx' yx
0 0 0 -x -y -1 xy yy
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With at least four pairs of corresponding points, one obtains:

e
9= : (HTHY' -H -k+v (10)
99
with:
=(I2§.}_l.:z4y and ]£=(, kn>4 1)

and V an arbitrary vector, which could contain a second criteria

to minimize. The main advantage of using projective
transformation instead of rigid one is that the inner structure of
the camera , which requires a model for calibration, is not
necessary and by this way could not propagate some inaccurate
intrinsic values due to the difficult problem of camera
calibration.

The calculation of ® can be performed efficiently by
Heckbert's method. Coefficients are determined by solving a
linear system. This yields a solution to the general
Quadrilateral-to-Quadrilateral problem. Speed up is possible
when considering several special cases: Square-to-Quadrilateral,
Quadrilateral-to-Square and then Quadrilateral-to-Quadrilateral
using the results of the last two cases. We now consider each
case individually:

Case  1: Square-to-Quadrilateral

Consider the mapping of a unit square onto an arbitrary
quadrilateral. The following four-point correspondences are

established from the X -plane to the x'y’ -plane:

0.0)- (%)
(1,0)-> (x.5) (12)
(1.0~ (5.5,
©.)- (5%

In this case the eight equations (6) and (7) become:

-

0; =x,

6,+6,-6,-x,=x,
0,+6,+6,-6, x,-6,-x, =X,
0,+65-0, -y, =
0,+6;+65-6,-y, =65y, =¥,
05+, =05 y;=¥;

The solution can take another form if we define the following
terms for our calculations:

(Ax1 =x; —x;
Ax, =X, —X;
Ax, =X, —Xx; +Xx, — X,
< , , 4)
Ay, =y, -y,
Ay, =y, -¥;
Ay; =Y, =yt Y3V

Coefficients of the projective transformation are:

( _ Ax;  Ax, /Ax, Ax,
’ Ay, Ay, Ay,
Ax, /I Ax,
6; =
Ay, Ay, Ay,
0 (x1 xo +0 xI (]5)
0, =(x3_x0)+98'x3
8, =x,
o, :(y;“.%)'*'efy;
0; =(}’; "J’3)+98'y;
\66 =Y,

This proves to be faster than the general method. The
computation may be generalized to map arbitrary rectangles
onto quadrilateral by pre-multiplying by a scale and adding a
translation vector.

Case  2: Quadrilateral-to-Square

The inverse of a projective mapping can be easily computed in
terms of the adjoint of the transformation matrix ® . Thus,
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0= aq'](®)/ det (@) where adj(@) is the adjoint of

® and det (@) is its determinant. Since two matrices which

are nonzero scalar multiples one of each other are equivalent in
the homogeneous coordinate system, there is no need to divide
by the determinant if it is not zero.

Consequently, the adjoint matrix can be used in place of the
inverse. This proves to be a very useful result because the
adjoint is always a well-behaved matrix even if the determinant
is very small, e. g. when the matrix is nearly singular. Due to
these results the inverse mapping is expressed below in terms of

the elements of © :

95-09—96-08 93-08—02 92~06—03-95‘]
adj(®)=| 96'67"‘94 91'93'67 93"94—01'06 |
L94-498—95 '97 92'07_‘91'08 91"95—62'04J

(16)

Case  3: Quadrilateral-to-Quadrilateral

The results of the last two cases may be cascaded to yield a fast
solution to the general Quadrilateral-to-Quadrilateral mapping
problem. The general Quadrilateral-to-Quadrilateral problem is
known as four corner mapping. Projective transformations offer
a planar solution to this problem. We note that the order of
points' labels of the quadrilateral is important. One quadrilateral
must have point labels ordered and only cyclic permutations are
available and this because convexity is conserved by projective
transformations;, we can use it like a constraint in order to
reduce the number of distributions.

Once the projective transformation @ is computed, we
calculate the projections of the borders of / ' by using @ , and

then by mapping @(] ') on the plane of [/ " we form the
borders of the resulting image.

I'=1+@(I')
I

overlapping area

e(I)

black colored pixels

Figure 1: Image mosaicing via projective transformation. By
default each pixels in the resulting image is assumed to be black
before the mosaicing step is performed.

3.1 Pixels coloring

By considering each rectangular pixel Q " in the result image
1", one wants to color it with an appropriate value C (Q ").
The method consists to back-project Q" , but only those
belonging to ®(I '), onto I’ . The output of the mapping is a

quadrilateral pixel. The color interpolation C ; 1s given by the
approximated formula:

cle)~c, (") 17

@

The computation of C ; 1s obtained by considering all fractions

of area A,- of output cell with color C; crossed by the
quadrilateral, so this simple calculation of C(Q") is given by:

A -C
C(Q”) = ;-z’-;l-—' for each crossed cell i 18)
Notes
e In our method each color is a 24 bits RGB value
256°R+ 256'G + 256°B

o If O (Q) ¢ I' the color is going to be set to black.

4. Conclusions

This work describes a procedure for high resolution
representation of planar textured images which is based on
projective transformations and which does not require calibrated
cameras.

W e are currently working in order to make a fully automatic
matching procedure between subimages.
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Figure 2: Output pixel mapped via a projective transformation:
left array is the output while the right one is the input.
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