DIGITAL APPROACH TO PHOTOGRAMMETRY: A FAILURE CONFIGURATION CASE

G.M. Cortelazzo
Professor at D.E.I
Universita degli Studi di Padova - Italy -
e-mail: corte@dei.unipd.it

A. Vettore
Professor at Istituto di Topografia
Universita degli Studi di Padova - Italy -
e-mail: vettoan@ux]1.unipd.it

F. Zanon
Engineer at Istituto di Topografia
Universita degli Studi di Padova -Italy -
e-mail: fzano@tin.it

Commission VI, Working group 3

KEY WORDS: Digital Photogrammetry, 3D Structure Recovery, Singular Configuration.

ABSTRACT

When a classical photogrammetry approach is used to recover a 3D scene structure the pictures are carefully taken and usually a
small angle intersect situation is avoided. This is due to the fact that when two, or more, pictures are taken in such a way a bad
parallax minimization is achieved and with consequent invalid results.

In digital photogrammetry the same problem has not been solved yet and a great number of programs fail if this situation is
encountered. For example in a commercial software of EOS SYSTEM © big ray intersect angles are recommended.

We want to investigate this problem testing a well established computer vision algorithm, the Longuet-Higgins one, over a bad
camera set configuration. We will illustrate that if the camera set is close to such a singular configuration the algorithm fails as it is

in the classical surveying techniques.

1. Classical approach to photogrammetry

Let’s assume to have two pictures of the same scene, taken
from two different positions. It is possible to recover the real
3D coordinates of a point in the scene referred to a system
located in any position in the real world if at least one
dimension of a scene-object is known.

The classical approach is generally divided in two phases: the
first one is the inner orientation (or relative orientation)
solution in which camera position are solved one related to the
other; the second is the absolute orientation in which if some
fixed points in the (real) world are known the real 3D
coordinates refereed to a (real world) system are calculated.
The basis are the so called collinearity equation:
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3D point coordinates, while R =['x’].-=1+9 are the rotation

parameters between the world and the camera reference
systems. Usually the rotation matrix is expressed in a way
which depends on the particular fields of the surveys: for aero-
photogrammetry the angles of Cardano are used, while for
terrestrial surveys Eulero’s angles are chosen.

Axis orientation depends on the photogrammetry convention:
the z generally points backward the (real world) object. The
origin is chosen on the focal point of the instrument.

Equations (1) can be easily derived noting that the projection of
a 3D point on a plane far f ' from the origin of the system

needs first to be related to the camera system via a roto-

! The focal length of the instrument.

traslation and then by a projective law. Generally homogeneous
coordinates are used so that a 2D projection of a 3D point has
three coordinates: the third one, in this case, is (minus) the
focal length:
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with o an unknown scale factor.

2. The parallax and the inner orientation

An important geometric concept in projective geometry and in
photogrammetry, is the parallax.

Parallax vector is simply defined as the vector connecting the
two projections of a 3D point, while parallax is the measure of
the same vector projected on a plane which is parallel to an
image plane. Figure (1) gives an idea of the geometrical
meaning of parallax. Also note that while moving toward the
original 3D point the parallax decreases and it completely
vanishes when such a point is reached.
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Figure 1: Geometric interpretation of the parallax. 7z; and 7,

are the two image planes, while 7z 1s the one where the
parallax is evaluated.

The last statement can be reconsidered starting from the end: if
we have two projections of the same point we can recover it as
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the point where the parallax is zero or, in the case of presence
of noise, as any point of the minimum parallax vector. This is
the most common approach used by optical and mechanical
photogrammetry machinery, and also by the most of the
software available.

Solving for a zero value of the parallax determines the inner
orientation but it does not give a metric reconstruction of the
scene. For a metric reconstruction the absolute orientation must
be resolved and some extra information is needed: for example
some points in the real world and well located in the two
photos.

This approach involves the investigation of twelve parameters:
three angles for each of the two rotation matrices and three
components for each of the two translation vectors. Five of
them are solved in the first phase, the inner orientation
solution, while the remaining are solved in the absolute
orientation solution.

3. The Longuet-Higgins algorithm

For each of the two cameras we will use the pin-hole model:
starting from a 3D point its projection is obtained by a simple
projective geometry law as formalized in section /:

P
P=—Z"'f 3)

The focal point is the point where all the projective rays
intersect while the principal point is its projection on the
image plane. The reference system is characterized by the x
axis pointing down, the z axis pointing toward the objects and
the y axis derived from the previous ones using the right-hand
rule, with the origin on the focal point.

We can easily refer a point on the first system to the second
one using the following (obvious) relation:

P =R-(P-1) )
where R is the rotation matrix while ¢ is the translation
vector. -

Due to the fact that the translation vector and the two
projective rays are co-planar we obtain:

p;-Q-py=0 &

Equation (3) is called the epipolar constraint while matrix Q
is called essential matrix %. Such a matrix, containing all the
information regarding the rigid motion between the two camera
stations, is defined as R-(t A) where:

0 . -
(tA)=|-t. 0 ¢
t, -t O

is the skew matrix version of vector ¢ .

What we need to calculate are the translation vector and the
rotation matrix from a set of epipolar constraints related to
different features in the two images. A very simple way to do
this is rewriting the set of epipolar constraints as a set of linear
equations and then solving the resulting system:

2 Or fundamental matrix in the case of known calibration
parameters.

q=0 (6)

n.

where 7 is the number of feature pairs and z_,, is a
rearrangement of feature couple coordinates. It is important to
note that no more than eight equations are useful because the
essential matrix is defined up to a scale factor 3, i.e. you can
divide left hand side of equation (5) by any number different
from zero.

Usually noisy images are assumed so a least square estimation
is performed and more than eight pairs of features are used.
Via singular value decomposition (SVD) we can rewrite matrix

IT -11 as:
I II=U-A-V (7)

with U and V orthogonal matrices while A is 9x9,
diagonal and positive defined, whose elements are decreasing
ordered.

Due to noise not all the epipolar constraints may be
simultaneously satisfied so the following minimum problem
needs to be solved:

min(||H- q”)llqll=l 3)

The last singular value, i. e. the 9" element of matrix A , is
the measure of the goodness of the solution: the closer it is to
zero the better the solution is. Not only: the bigger is the ratio
between the 8" and the 9" singular value the less distorted is
the solution. The best estimate of matrix Q is the singular
vector associated to the 9" singular value, i.e. ¢ =V, , because

it selects the 9" eigenvalue which is the smallest one.

To extract the rotation matrix R and the translation vector
t from the vector g we need first to reorder the elements of it.
It is important to observe that four solutions are possible
depending on the sign of ¢ and on the rotation direction. By a
second SVD derived from the geometrical interpretation of the
roto-traslation /3] it is very simple to determine each
components of the motion. The right couple (R.f) can be
recovered noting that all depths are positive according to the
camera reference system. Depths may be easily calculated by
the following relationships:

z,=(n-m)/lm - 1
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4. Parallax and epipolar constraint

3 Situation which is very similar to the one previously
encountered while analyzing the classical approach to
photogrammetry.
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The Longuet-Higgins approach to the problem is strictly
related to the classical approach because, as we will focus in
this section in a very intuitive way, an intimate relation exists
between the minimum problem (§) and the parallax
minimization.

This relation derives from the geometrical interpretation of the
epipolar constraint: it states that the volume of the 3D solid
delimited by the two corresponding projective rays and the
translation vector ¢ is zero due to their co-planarity, see figure
(2). So, parallax for each couple of features needs to be zero to
satisfy such a situation. As explained in section the projection
of the vector connecting point p, to point p, vanishes moving

toward the 3D (original) point.

Minimizing the (sum of the) parallaxes and minimizing the
norm of the vector IT-g as is in problem (&), is just the same
thing, and even if the two quantities are geometrically
different one from the other, they both involve the same value
in the optimal case. Not only. The more parallel are the
projective rays the worse the situation is because bigger
parallaxes exist and no good (simultaneously) vanishing is
achieved. This problem persists in each approach and is strictly
connected to the camera set: the best solution is taking shoots
avoiding big ray angle intersect.

S
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Fi igure 2: Geometric interpretation of the epipolar constraint.
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5. Comment about the experimental results on the failure
configuration

The experiment aimed to recover the 3D coordinates recover
via the Longuet-Higgins algorithm of a few points located over
some boards reproducing a terrain: figures (3) and (4) show the
photos which have been used for the test.

Using the classical approach unreliable results have been
obtained for the 3D points and so an alternative solution for the
surveys was investigated.

Figure 3: The right picture reproducing the boards to be
measured.

Figure 4: The left picture of the same scene.

The alternative method gave a very unpleasant result:
depending on the set of features chosen in the two pictures the
3D coordinates of the target points changed a lot.

Ten trials were run but the results obtained were very
unreliable. In one case the algorithm completely failed and no
positive depths were calculated.

The reason of the unreliability was found on the very low
values of the ratio between the 8” and the 9" singular values.
A good solution is achieved when such a ratio is of the order of
thousand, while in this experiment the biggest value was of the
unity order.

Figure (5) reports a graphic interpretation of the results which
well illustrates the estimation bias: I, is a test reference

system while £, and I, are the corresponding ones obtained

by the application of the rigid motion using two different
estimated couples (R.t). Precisely £, is obtained using the

result of the 1* trial while £, is the obtained from the
parameters of the 7™ trial.

Figure 5: Graphic comparison of two different estimated
motion parameter couples (R.z) obtained in two different trials
using different set of features. Unit is meters and translation
vectors are normalized.
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In order to justify this the scene and the camera set have been

investigated. As mentioned in the original article of Longuet-

Higgins some singular scene configurations exist:

e when at least seven features lie over the same plane;

e when at least four features are located on the same straight
line;

e when the 3D surface can be described with a quadratic
equation.

The first case was the most similar to the one under

investigation and the failure was originally attributed to the

quasi planar situation of the scene. But it was not right due to

the fact that a lot of points have been selected outside the

boards and at least three targets are located on the outside part

of the marble wall.

Another thing was the camera set: the angle between the two

camera is very low and they have guasi parallel projective rays.

Figure 6: Big angle rays intersection.

Figure 7: Low angle rays intersection. As you can notice the
error on the identification of the re-projected point is bigger
than in the previous figure.

Figures (6) and (7) well illustrate the situation. Here the bias is
modeled as a wrong angle between two correspondent
projective rays: obviously a better model should include a
biased localization of the 2D feature in the image plane.

The low angle intersection involves a worst approximation of
the real 3D point compared to the approximation resulting
from the situation of bigger angle.

6. Conclusions

Digital approaches to photogrammetry offer the possibility of
automating most of the operations for aerial and terrestrial
surveys but they do not eliminate the presence of some singular
configurations in the camera set and in the scene objects
geometry too.

Here we only considered a well established computer vision
algorithm in a very unpleasant situation but commercially
available software does not correctly handle this situation.

The problem depends on the geometry of the scene which
cannot be predicted. The only solution is avoiding such
configurations both in the camera set and in the object-scene
set.
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