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ABSTRACT

In this paper we illustrate a method for automatic reconstruction of models of a piecewise smooth
surface. When the object has a complex shape it is very difficult to obtain a good reconstruction and a
real-looking representation. If the object has a continuos curvature (convex hull) it is possible to generate
a 3D triangular surface employing the Delaunay algorithm, generalized to the 34-dimensional case. Then
if one wants to have a good result in terms of visual display it is necessary to apply another algorithm that
produces Bézier splines on a triangular support. Of course, a realistic reconstruction of the object shape
needs a high hardware performance to obtain as a final product the display of the interpolated surface
(using CAD software). Some applications will be shown by means of examples.

1. Introduction

To create a truly good representation of a three-

dimensional object one needs mathematical tools.

When the object has a complex shape it is very difficult

to obtain its reconstruction, so different methods of

interpolation or approximation may be used to generate

a Digital Elevation Model (DEM) or Triangulated

Irregular Network (TIN), according to the shape

characteristics of the object. In fact, if the object has a

continuos curvature (convex hull) it is possible to

generate a 3D triangular surface employing the

Delaunay algorithm. Besides, to obtain a good result in

terms of visual display it is necessary to apply another

algorithm that produces Bézier splines on a triangular

support. By using this algorithm for the triangulation

and smoothing of the generated surface, it is also

possible to control the series of points which have to be

interpolated and to fix (a priori) the smoothing level of

the final surface, with very small fluctuations.

Here a method for automatic reconstruction of models

of a piecewise smooth surface is described: some

applications will be shown by means of examples.

Of course, a realistic reconstruction of the object shape

needs a high hardware performance to obtain as a final

product the display of the render of the interpolated

surface (using CAD software).

The method presented can be divided into steps:

a) data acquisition;

b) data processing (topological organization);

c) interpolation and new data prediction by Catmull-
Rom splines;

d) selection of an interpolation technique based on the
triangulation method (Delaunay algorithm);

e) smoothing of the surface by Bézier splines.
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2. Data acquisition and topological organization

To obtain a DEM that completely describes an object
having a complex surface, it is necessary to survey a
lot of points. Data acquisition can be obtained by
different and mostly automatic technologies
(mechanical coordinate machine taster, laser scanning,
photogrammetry, etc..). Among the new techniques,
photogrammetry provides the survey of many
interesting points with good results. This task
unfortunately can’t be performed in a short time and
without a great effort by human operators using
classical phogrammetry (analogical or analytical). On
the contrary, digital photogrammetry can solve this
problem by applying the fast and automatic method of
least squares matching [1] [5] on two or multi images
of the object, taken from different points of view. It is
important, in this kind of survey, to know not only the
coordinates of the points, but also their topology. Data
acquisition sometimes results in a series of » points of
the object surface in R? which are not always
organized in a topological way.

In fact if one takes a series of » points, lying on the
external surface of a 3D object, it is important to
reconstruct their topology, before applying the
algorithms to interpolate or approximate the object
surface.

Moreover it is necessary that the whole point set lies on
the convex hull, to obtain a digital elevation model
close to the object; on the contrary, when there are only
few points on the external surface, it obtains a 3D
representation is not obtained with an acceptable
approximation. Note that there is not only one efficient
solution for every possible case.

Data processing, the phase in which the topological
structure of the data is fixed, becomes the necessary
preliminary step for data reordering, using different
criteria.



In this work, the series of given points 1,={P, P,,..,
P}, acquired by photogrammetry, is structured in
planar sections (like contour lines or profiles), -where
the points are classified by different heights (see Fig.
2.1).

Fig. 2.1 A sample of data in R? structured in contour
lines

Topological organization allows for the reordering of
the points belonging to the same planar section,
researching the relations between the points and then
predicting new points.

Scientific literature describes different criteria to this
purpose in a short time and with good results [3]. To
this aim we decided to apply the minimum distance
criterion: two points P; and P; ,which lie in the same
planar section, are neighbouring if and only if they are
at the minimum distance from one another with respect
to any other point of the data set

d(P P,

%, J)sd(P,.,P,‘) for every izj#k (2,1)

During this step the new numbering of the points is

done too.

The preprocessing is divided into three steps (see

Fig.2.2): 4

1) for every planar sections the coordinates of the
centre C (x,, y,) are calculated:

x =;__; yc=ifl_; z =2Z. (i=1,n) (232)

2) the reference frame is shifted from the origin x=0
and y=0 to the coordinates of the centre C (x,, y,):

Xi =X =X, 5 Yi=Yi = Ve (2,3)

3) for every planar section a new starting point is

identified to organize a new numbering using
cylindric coordinates with origin in C:

E(xi'yi’zi)={&cossi’RisenSi’zi} 24
where
R, = (x,Z +yi2)

Original position of the points Topological organization by a
structured in planar sections  minimum distance criterion and
new numbering

Search of a centre and shift New reordering of the points,
of the reference frame starting from 8

Fig. 2.2 Topological organization

The first point is the one with8 =3 . | so that the
new numbering of the series starts from this point with
step 9 , running counterclockwise.

After data preprocessing it is possible to apply to the
reorganized data set interpolating and/or approximating
functions which allow for a fast prediction of new data.

3. Interpolation of curves by parametric functions
The classical interpolation problem involves replacing
a “complicated” function, y=f{x) or z=f{x,y), by a
“simpler” function, y=a(x) or z=a(x,y), in such a way
that the interpolating function and the given function f
have the same values at positions corresponding to a
prescribed set of points.

In this section we present the interpolation of curves
given in parametric form (since this is more common
in practice), rather than functions of the form y=f{x) or
z=f(xy).

The parametric representation for curves, x=f{y),
y=f(x), z=z(t) overcomes the problems caused by
functional or implicit forms. Parametric curves replace
the use of geometric slopes (which may be infinite)
with parametric tangent vectors (which are never
infinite).

The image of an open, closed, half open, finite, or
infinite interval / under a continuos, locally injective
mapping into R? or R is called a curve.

A curve can be considered as a set of points P, with
respect to a given origin O. These points can be
regarded as vectors P; which are the values of a locally
one-to-one vector-valued function x=x(y) of a
parameter ¢ defined on an interval /. The function x(?)
is called the parametrization of the curve.
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Given n+] pairwise distinct points P; in R3 | i=0,
1,...,n, associated with (appropriately selected)
parameters ¢;, there are different polynomials which

interpolate a curve and different ways to choose the

value of the parameter #, depending on the final shape

of the interpolating curve, on the computing time, on

the accuracy required [4].

We generally prefer the parametrization of curves

because it gives us greater flexibility and some

advantages. In fact these functions offer:

e less constraints for the control of the shape, since
every component (x, y, z) is a function of the
parameter ¢, x=x(2), y=y() and z=(1);

e computational advantages and fast programming,
since they use the vector-valued form.

The interpolating functions, which are used in
particular for many applications in modelling, are
polynomials of low degree 3 < m < 5. They describe a
given set of empirical data, corresponding to
measurements by means of curves with different
degrees of smoothness and performed in such a way as
to minimize a prescribed error measure and undesirable
fluctuations.

So a curve is approximated by a piecewise polynomial

curve; each segment Q of the overall curve is given by

three functions, x, y, and 2z, which are cubic

polynomials in the parameter z.

Cubic polynomials are most often used because lower-

degree polynomials give too little flexibility in

controlling the shape of the curve, while higher-degree
polynomials can introduce unwanted wiggles and also
require more computations.

Higher-degree curves require more conditions to

determine the coefficients and can "wiggle" back and

forth in ways that are difficult to control. Higher-
degree curves are used in applications in which higher-
degree derivatives must be controlled to create surfaces
that are aerodynamically efficient. In fact, the
mathematical development for parametric curves and
surfaces are often given in terms of an arbitrary degree

m. If we fix m = 3, the cubic polynomials that define a

curve segment Q(2)=[x(t) y(t) z(t)] are of the form:

() =a’ +bt* +c t+d,
_ 3 2

W)=ap +bt* +ct+d,

2(t)=at’ +bt* +ct+d. 0<r<l

G.D

To deal with finite segments of the curve, without loss
of generality, we restrict the parameter ¢ to the [0,1]
interval.

Setting T = [t3 ot 1], and defining the matrix of

the coefficients of the three polynomials as:
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a. a, a
b, b, b,

C= (3,2)
c. ¢, .
d, d, 4.

we can rewrite eq. (3,1) as:

o) =[x(1) ) 9]=T-C (3.3)

This provides a compact way to express eq. (3,1).
If two curve segments are linked together, the curve

0 . . Lhe

has G geometric continuity. If the directions (but not
necessarily the magnitudes) of the vectors tangent to
the two segments are equal at linkage points, the curve’

1 . .. . .
has G geometric continuity. In computer-aided design

of objects, G continuities between curve segments are
equal at the linkage points. If the tangent vectors of
two cubic curve segments are equal (i.e., their
directions and magnitudes are equal) at the segments'
linkage points, the curve has first-degree continuity in
the parameter ¢, or parametric continuity, and is said to

be C' continuous.
Each cubic polynomial of eq. (3,1) has four
coefficients, so four constraints will be needed,
allowing us to formulate four equations in the four
unknowns, then solving for the unknowns. The three
major types of curves are :
e Hermite (defined by two endpoints and two
endpoint tangent vectors);
e Bézier (defined by two endpoints and two more
points that control the endpoint tangent vectors);
e several kinds of splines (each defined by four
control points).
The different types of parametric cubic curves can be
compared using different criteria, such as ease of
interactive manipulation, degree of continuity at
linkage points, generality and computing time needed
[4].
To see how the coefficients of eq. (3,1) depend on the
four constraints, we rewrite the coefficient matrix as
C=M-G, where M is a 4x4 basis matrix, and G is a
four-element column vector of geometric constraints,
called the geometry vector. The geometric constraints
are the conditions, such as endpoints or tangent
vectors, that define the curve. The elements of M and
G are constants, so the product 7-M-G are indeed the
cubic polynomials in t. Expanding the product
ot)=T-M-G gives:

my my my omy, |G

Q(t) _ My My My My, |G, (.4)
my My my omy, |Gy
my My my my || G,



Very often, we have a set of positions and want a curve
to interpolate (pass through) them smoothly. The
Catmull-Rom family of interpolating or approximating
splines, also called Overhauser splines, are useful in
this situation. A spline belonging to this family is able
to interpolate points P/ to P"_] in the sequence of points

Po to P,. In addition, the tangent vector to point P_is
parallel to the line connecting points P_I and P~+/'
I= I

Unfortunately, these splines do not have the convex-
hull property. The natural (interpolating) splines also
interpolate points, but without the local control
guaranteed by the Catmull-Rom splines.

Designating M as the Catmull-Rom basis matrix and
using the same geometry matrix G, the representation
is:

-1 3 3 172,

e, 2 =5 4 -1|P,
t)=—|t t t 1
o) 2[ ]—1 0 1 0P

0 2 0 0]~

In this work we have chosen the Carmull-Rom cubic
spline curves because they have the characteristic of
allowing for a fast algorithm [2]. This choice was made
also to match these requirements:

1) finding an interpolating smoothing curve with c'
continuity;

2) finding a curve with only local perturbations,
without too many modifications on the complete
surface;

3) doing the change of a given point in the series or
predicting a new point without having to
completely compute the curve again but only the
neighbours to the point.

The Catmull-Rom’ cubic spline curves interpolate the

point set in the sequence organized by the previous

topological criterion. In fact every segment of this
curve passes through each point in a parallel direction
to the line between the adjacent points with continuos

1 . . ;g
curvature C . The straight line segments indicate these
directions (see Fig. 3.1).

P

Fig. 3.1 The spline passes through each point in a
direction parallel to the line between the adjacent
points.

The choice of the parameter is free but depends on the
final shape that we want to obtain. In the algorithm
implemented and described in this work, we have used

an equally spaced parametrization. The prediction of a
new point is easy, since we introduce the parametric
value ¢ of this new point in the Catmull-Rom equation
using four points around it. The introduction of a
change in the position of a point causes a deviation
only in the four segments of curve neighbouring this
point. Therefore this type of curve is only locally
disturbed. The algorithm implemented uses the series
of points previously organized to predict N points on
each section, necessary to correctly apply, later on, the
Delaunay triangulation according to the final complex
surface representation. Two examples are presented in
Fig.3.2, Fig. 3.3.

Fig. 3.2 First example of interpolation by Carmull-
Rom splines
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Fig. 3.3 Second example of interpolation by Catmull-
Rom splines

Note that one must multiply the number N of points by
a coefficient k (k=1 for curves of odd order and k=2
for curves of even order). This procedure will be useful
when the Delaunay triangulation algorithm will be
exploited to research the connections among the points
of different planar sections.

4. Application of the Delaunay triangulation
algorithm

In this section we discuss a method based on the
triangulation reconstruction of the convex-hull of the
data point set x;, lying on the planar sections, where the
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vertices P; of the triangulation coincide with the points
x;. For each triangle, we construct a surface patch

which interpolates the given function values (and
possibly also the derivatives) at the vertices P;.

There are a number of methods available and they can
be differently combined.

The need to construct a globally optimal triangulation
suggests that we work with the d-dimensional version
of the Delaunay triangulation (the straight-line dual of
the Voronoi tessellation). An appropriate triangulation
is generally chosen such as to satisfy some optimality
criterion which guarantees, first of all, a unique
triangulation, possibly without elongated triangles.

A globally optimal triangulation (that is, of course,
locally optimal) is the triangulation associated with the
max-min angle criterion. To explore this, we recall that

given a point set P = {P,} , the corresponding Dirichlet
tessellation (see Fig.4.1) (also called the Thiessen or

Voronoi tessellation) is defined as the partition of R®3
into Dirichlet tiles:

F={xe®d(xR)<d(xp)} forall j#i (41)

Fig. 4.1 Voronoi tessellation and associated Delaunay
triangulation

Here d (x ,P k) is the Euclidean distance, F'_ is the

polygon consisting of all points x; € ®* which are
closer to Pi than to any other P, with j=#i. Fare pairwise

disjoint and cover all of R,
Given the point P,-’ a corresponding Dirichlet

tessellation can be constructed by finding the

perpendicular bisectors to the line segments connecting
the various points P .
1

The Delaunay triangulation of the points P, is the dual
of the Dirichlet tessellation; two points P and P are
connected if and only if the tiles F and F of the

associated Dirichlet Tessellation share a common edge.
The Delaunay triangulation can be constructed using
an appropriate "circle criterion” in 2D dimension or
the "spherical circumscribed circle criterion” in 3D
dimension. For example the local circle criterion is
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satisfied for a quadrilateral with vertices P, P, Pk, P,
i

provided that the circumscribed circle associated with
the triangle T“k with vertices P, P, Pk does not contain
ij i
the vertex P of the triangle 7' » with vertices P, Pk, P/
J! J

which shares the edge PP

If the local circle crzterzon is satisfied for every convex
quadrilateral, so is the "strong" global circle criterion
which requires that for every triangle in the

triangulation, the associated circumscribed circle
contains no other data point (see Fig.4.2).

(@)

®

Fig. 4.2 Local circle criterion: (a) satisfied, (b) not
satisfied

It is also possible to construct triangulations on curved
surfaces using curved triangles (e.g., spherical triangles
on the surface of a sphere) (see Fig. 4.3). In fact the
spherical circumscribed circle criterion checks
whether a given point X, lies inside or outside the

spherical circle k;; passing through the three points x;
X X, (see Fig.4.4) [4].

Not admissible
g N
“
p
I
Admissible
Fig. 4.3 Not admissible and admissible spherical
triangles

A triangulation method can be applied to general
B . 3
convex surfaces. Given a set of points x € R, we can

define a 3D triangulation, in direct analogy with the
definitions reported above also if there are essential



differences between triangulations in the plane and
P S .
those in R which must be underlined.

Fig.4.4 Neighbouring triangles with diagonals €; and
Cix

For example in the plane the set of points and its
convex-hull uniquely determine the number of
triangles and the number of edges of the triangulation.

In a higher dimension this is not so simple. So, in ®’
we cannot always distinguish triangulation on the basis
of which data points are connected to each other.
Moreover, an iterative construction of the triangulation
is not always possible in the three-dimensional case.

While the max-min angle criterion can not be directly

generalized to ‘.Rs, we can construct the Delaunay
triangulation by using a version of the circumscribed
circle criterion involving (hyper) spheres.

We want now to illustrate the method to realize a 3D
triangulation of a set of points. In the last section we
have shown the topological and interpolating criteria to
organize the data. In this phase we search the
correspondence among points which belong to planar
sections which are next to one another. This is
important in order to correctly obtain the final
triangulated surface; in fact a wrong correspondence
can produce a false interpretation of the model of the
complex surface. Among the different methods tested
to search corresponding points lying on neighbouring
contour lines, we have chosen the ‘“direction
criterion”. This method is simple and fast also for
complex surfaces. It consists in connecting the points,
expressed in polar coordinates, of planar sections of
different order, which have the same 9 angle
direction.

In this way it is simple to construct the 3D
triangulation, because one needs to connect N points
predicted on a planar section of odd order with 2N
points predicted on a planar section of even order; we
recall that the points must have the same 9 angle
direction (see Fig.4.5). Note that in this case we must
satisfy the above mentioned circle-criterion of
Delaunay. Two examples are presented in the Fig. 4.6,
Fig. 4.7.

) Bi+2
odd order 6i
\J\_e;”/\‘/ planar section
i+1
even order
|___./‘

i+2 / I \
odd order ®
/ \

B =angle direction

\

\

Fig. 4.5 Planar sections of different order: the points
with the same angle direction have been connected

130

==X\ = e

S NS SN
RS S

DPINSSRIR

\

—

\i

/2

I\
"W
S
A

0
A
VA
4‘&

I/
&
N5

1
D,
V

IAY
O

\)
é
%\
\
a

i

Z

\

%1
i
7
W
V
f
S

;gh
)
R
g
N
Ve

%
»
)

0
i
)
|
{
)

K/
)
M)

;
/
/1
4
gg WY
|
N
"
\

/

)
V)
/
f
I
a
!
|
ﬁ‘

|
|
|
|

|
i
IV
N
I
I\
i
I
4

|

6’4
li

|
‘\It

N ——
—

—

/I
)

|

[

\
g
i

<=

49

/
)

i
|
(‘P

4

i
%:;
i

O
Wil
%

!}0
N

S
52 %&é%
oK S<——F
$ Aﬁwg;‘gﬁl/
e

o
o
il
/N

S OS oS & &
SO><><2 <—K)

Fig. 4.7 Second example of Delaunay triangulation

5. Smoothing of the surface by Bézier splines

Now we will describe a type of surface representation
by triangular splines on the Delaunay triangulation.
Afterwards we will show examples of construction and
representation of three-dimensional objects closed by a
series of surveyed points, obtained fitting the surface
constituted by triangular patches.

An interpolating method using global continuous C'
piecewise polynomial functions is defined using the
triangular mesh as starting point [4].

The last phase of the surface reconstruction produces a
new mesh optimization by exploiting the Bézier
method. This method, although even if it is locally
approximated, allows to obtain good results in terms of
visual display. A triangular control mesh is



approximated by a piecewise C' continuity spline
surface composed by sestic triangular Bézier patches.
Modelling of the three-dimensional objects can be
obtained through elements (patches) of limited
dimension, geometrically simple, easy representable
with simple mathematical functions. Every element is
formed by many points, whose coordinates are given
by continuous parametric functions in two variables (¢
and s) defined in the limited interval [0,1]. The choice
of the type of patch (triangular, quadrilateral, etc.) and
the shape of its sides depends on the chosen method of
interpolation. For example if the Delaunay
triangulation is used, every patch is one of the
triangles. If, instead, an interpolation with polynomial
functions is used, the sides will be curvilinear.

In order to describe such a surface, the parametric
equation of the curves (see section 3), extended to the
bidimensional case, is:
o)=T-M-G 6,1
and if we decide that the geometric vector G is, instead
of constant (as in the case of parametric curves)
variable as a function of the parameter ¢, the parametric
surface of the element is obtained. First, for notation
convenience, we replace ¢ with s, having
O(s)=S-M-G . If we now allow the points in G to
vary in 3D along some path which is parameterized on
t, we have:

Os,t)=S-M-| >/ | with 0<s,7<1 (5,2)

Where the geometric vector G(2) becomes a matrix. So
G(t) are cubic polynomial functions, and the cubic
parametric patches surface is obtained. We have
obtained an equation which shows the dependency on s
and ¢, and can again isolate a geometric vector G,
which is a constant:

s, t)=S-M-G-M"-TT (5,3)
The bicubical surface of Bézier with regular shape is a
surface constituted by rectangular patches, where the
geometric matrix G consists of 16 control points (or
points of Bézier) They are the 16 points that define the
polyhedron characteristic, and i.e. the patches of the
surface of Bézier. They control the slope of the
boundary curves and the torsions along the boundary
curves.

In many practical applications, when the data are not
acquired on a rectangular regular mesh, but they
represent a series of scattered points, the choice of a
patch of rectangular shape is not convenient since
usually triangulation techniques are applied for the
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construction of the shape. In the examples illustrated in
this work the triangular surface patch is considered
since it is the more natural choice starting from a
triangulation of the points (see Fig. 5.1).

Fig. 5.1 From the triangular mesh to the Bézier patches

To analyze this problem in detail, it is convenient to
introduce the Bernstein polynomials, associated with a
base triangle, to construct the parametric equation X{(x)
of the surface of triangular Bézier splines of degree
m=6. They can be expressed in the following form:

X(u)= 3 p;B/'(u)

|1|=n

(4

where p, they are the points of Bézier and B (u) is the

polynomial of Bernstein of degree m=6, defined in the
following way:

B0 =y 69
itjtk=6, i) k20, rtstt=1, rst>0,
l=i+j+k ll=r+s+t

They form the Bézier net or Bézier polyhedron
associated with the surface. It immediately follows that
triangular Bézier surfaces have the convex-hull
property. The convexity of Bézier surfaces is not so
easy to be determined that of curves. This is a
consequence of the fact that a surface with all convex
parametric lines is not necessarily convex.

Since for the construction of the spline of Bézier the
coordinates of the control points are required and only
three of them are defined from the initial data (being
the vertices of a triangle coming from a previous
triangulation of the series of data), the other ones must
be obtained using proper criteria, as functions of the
coordinates of the vertices of the adjacent triangles to
the one taken into account.

An effective method that allows to determine the points
of Bézier has been proposed by Loop [6]. This method
considers the surface approximating the triangles,



whose vertices are the 28 points of Bézier. The vertices
are computed starting from every side, taking into
account the continuity C' with the adjacent sides. The
method requires to determine four points on every side
of the triangular patch and again four points on every
segment obtained. Also the direction of the plane of the
triangular side to which it belongs is needed.

Therefore the Bézier points completely determine the
Bézier surface, and are also affinity invariantly related
to the surface. The Bézier net associated with a
repeated subdivision converges to the Bézier surface.
The Bézier net approximates the surface, and can be
used to compute intersection curves of the Bézier
surface.

If a single Bézier surface is not able to approximate a
given surface well enough, then we may use several
Bézier surface patches which are joined togheter under
prescribed continuity conditions (see Fig.5.2). For
example we can require that visual C' continuity
implies geometric C' continuity.

Fig. 5.2 C' continuity for the triangular Bézier patches

Different cases of continuity must be taken into

consideration [4]:

e the first derivatives coincide along and across the
common boundary curve between two Bézier
patches (C’ continuity);

e the first derivatives coincide along the common
boundary curve, and the cross derivatives along the
boundary curve have the same direction (visual C’
continuity);

e the two neighbouring Bézier patches have the same
tangent planes along the common boundary curve
(geometric C* continuity)

The parametric continuity C' between two patches

imposes that the control points of Bézier lying on the

common side and the neighbouring points are coplanar.

In order to guarantee the continuity of the whole

surface, besides the continuity conditions between two

adjacent elements, it is necessary to guarantee also the

continuity condition of all the elements that meet at a

vertex. Once solved the continuity conditions of the

patch, one has to impose conditions in order to prevent
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superimpositions of the same patch and to define the
normal vector at every point of the common side.
By combining several steps of the algorithm

implemented, we can subdivide a triangular Bézier
patch into an arbitrary number of subtriangles of
degree m. The sequence of piecewise linear surfaces
interpolating the Bézier nets converges to the Bézier
surface (see Fig. 5.3, Fig. 5.4).

Fig. 5.3 First example of smoothing surface by Bézier
splines

Fig. 5.4 Second example of smoothing surface by
Bézier splines

6. Conclusion

Usually in designing curves and surfaces, we not only
want a good approximation of the data, but we want
the curves or surfaces to be “visually pleasing”, in
some functional or aesthetic way. In the last section of
the paper we have described the procedure to generate
a good visual final product. Here we present a realistic
reconstruction of natural object using CAD software
(see Fig. 6.1, Fig. 6.2).



Fig. 6.1 First example: rendering, with a realistic visual
display

Fig. 6.2 Second example: rendering, with a realistic
visual display

As one can see, the technique illustrated gives good
results for 3D objects of cylindric or similar shape. The
idea of generalizing this method to objects with one or
more complex shapes shall be studied, along with the
choice of other interpolating functions to predict the
points that take into account also the possible
roughness of the curves. In conclusion, the problem of
the complex surface reconstruction is open to new
research in the future.
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