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ABSTRACT We present an “exact” and an “iterative” computational procedure for determining the phase center
coordinates of the GPS receiver antenna and its clock offset by using pseudorange measurements and a minimal
number of satellites. Both procedures do not need the linearization of the pseudorange equations, thus avoiding the
computation of the initial (approximate) values of the unknowns.

RESUME’ Nous présentons une méthode de calcul "exacte" et itérative” qui permet de déterminer, en utilisant la
mesure de la pseudodistance et un nombre minimum de satellites, les coordonnées du centre de la phase relatives au
récepteur GPS et au décalage des horloges. Les deux procédures ne nécessitent pas la linéarisation des équations par
rapport aux observations de la pseudodistance, ce qui évite de calculer les valeurs initiales (approximatives) des

inconnues.

INTRODUCTION

The data required for computing the GPS receiver posi-
tion through pseudorange measurements are represented
by the satellite istantaneous coordinates and its clock
offset, while the unknowns are the coordinates X, Y, Z of
the phase center of the receiver antenna and its clock
offset.

In this way a set of non linear pseudorange equations is
originated. The procedure usually exploited for its
solution is the iterative Newton's method:

Xpa =Xy +17 = f(x,)) 1

where x is the vector collecting the receiver’s positioning
together with clock offset,Jis the matrix of partial
derivates and ris the vector of four pseudorange
observations. If more than four satellites are available, a
least squares procedure can be implemented:

Xpe1 =X, + TWHTIW(r-f(x,)) @)

where W is a positive definite weighting matrix
(Crocetto et al.,1997). This procedure is particularly time
consuming since it requires not only the elaboration of
the parameters relative to the satellite’s orbit but also the
determination of the approximate coordinates relative to
the receiver’s antenna, the linearization of the
pseudorange equations and, finally, the “iterative”
solution. For this reason simplified algorithms for the
low cost single point positioning have been presented in
literature (Noe et al. 1978). Anyhow the problem of

solving a system of at least four nonlinear equations in
four unknowns still remains.

A closed-form solution of the nonlinear pseudorange
equations has been presented by Bancroft (1986) who
uses a direct (non iterative) algebraic solution. This
procedure can be implemented also for more than four
satellites and pseudoranges, but the corresponding
solution is not optimal in the L, sense.

Further, in the case of four satellites direct solutions have
been obtained by Krause (1987), Chauffec and Abel
(1991).

Particularly Hoshen (1996) proposes a closed-form solu-
tion by introducing spherical coordinates and by using
the relationship existing between the ancient Problem of
Apollonius and the pseudorange equations.

In this paper we present two new algorithms for compu-
ting the GPS single point position by using only four
satellites; the former provides a closed-form solution,
while the latter is iterative. Both algorithms do not requi-
re the linearization of the pseudorange equations and
hence the a-priori receiver’s approximate coordinates.
Whenever more than four satellites are considered, the
receiver’s coordinates evaluated through the exact algo-
rithm can be exploited as initial values in the least
square procedure.

Such algorithms have been implemented and tested by
simulating a typical post processing condition in which
the input data are the satellite’s istantaneous coordinates
(simply deduced from a file relative to the precise
ephemerides in the SP3 format) and only the four code
measurements. Furthermore the same algorithms have
been tested in several real cases.
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1. THE COMPUTATIONAL PROCEDURES

1.1 The exact algorithm for processing four pseudo-
range measurements

The relations between the observations of pseudoranges

r;, the known Cartesian coordinates of four satellites

(xi,yi,zi) (i=1,2,3,4) and the four unknown parame-

ters of the receiver (x, y,z, A) (respectively equal to the

three Cartesian geocentric coordinates and to the clock
offset) are for 1=1,2,3,4 :

‘/(;-xi)2+(y-yi)2+(z-zi)2 +A=r; (1.1.1)

from which setting A at the right side and by squaring
we getfor 1=1,2,3,4:

@&-x) + -y +@2) =1’ +£ 25 A (1.1.2)

Hence, manipulating and ordering, subtracting the first
equation, the second and the third one from the fourth
equation of the set (1.1.2), the quadratic terms in the
unknowns are removed and we obtain the following
system of linear equations:

(x4—x1)x+(y4—yl)y+(z4—zl)z—(r4—rl)A+f1 =0
(X4—X2)X+(y4“yz)y+(z4'Zz)z"(r4—l’2)A+f2=0
(X4 —x3)x+(y4—y3)y+(z4—z3)z— (l‘4—l‘3)A+f3= 0

(1.1.3)
where we assume for i=1,2,3 :

2,22 2 2, 2. 2 2
—(x,ty, +z, -1, )+ (x] ty; tz, -, )
f,= . (1.14)

The system can be written as:

alx+bly+clz+d1A +f1=0

azx+b2y+c2z+d2A +f2=0 (1.1.5)

a x+b3y+c

5 z+d3A+f3=0

3

where for 1=1,2,3 :

ai=x4—xi
b, =Y,y

Ci —Z4—Zi

(1.1.6)

d; =—(r,-r)

The unknown vector of the Cartesian geocentric coordi-
nates of the receiver can be obtained from the system
(1.1.5):

- -1

X al bl Cl —‘dlA“‘fl
y[=|a, b, ¢| |-dA-f;|=
z a, b, ¢ —-d;A-f
L3 "3 73 T (1.1.7)

1 ﬁl Y1 —dIA _fl X0 +1A
=lo, By v, || -d2A-fy|=]y,+mA

0y By v5|[—d3A-f3 zZ, +nA
where:

xo =-oyf1—Byfy —v,f,
Yo =—0p f1—Bofy-v2 1,
z, =—a3fi-P3fy-y3f;

I=-(a;d; +Byd; +v,d5)
m=—(azdy+Bydy ty2dy) (1.1.8)
n=_((x'3d1 +ﬁ3 d2+'Y3 d3)

Substituting the equations (1.1.7) in the first relation of
the (1.1.2) and setting the coefficients equal to:

2

e, =12 +m? +n* -1

ey = (X =X +(yo — ¥, )M+ (2, —z;)n+r;  (1.1.9)

€3 =(Xo —X1)2 +(yo_y1)2 +(Z0 -7y )2 _r12

a quadratic equation in the unknown A is derived :
e A2 +2eA+e3=0 (1.1.10)

Substituting each possible solution of the previous in the
relationships (1.1.7) provides, in general, a double set of
four parameters (x,y,z,A) .

Differently from Bancroft (pag.56) and Krause (pag.
226), Abel and Chauffee (1991) prove that in the case of
four satellites, a fix may not exist and, if it exists, it is
not guaranteed to be unique. Besides, the existence of the
fix depends on the receiver-satellite geometry and pseu-
dorange errors while the uniqueness of the fix depends
only on the receiver-satellite geometry and not on the
receiver clock bias.

According to Abel and Chauffee (1991) the existence of
the solutions of the quadratic equation (1.1.10) depends
on the receiver-satellite geometry (upon which affect the
values of o;,B;v;.f;) and on the pseudorange errors

(occurring in the expressions of d;.f;).

When the equation (1.1.10) admits two solutions, the
ambiguity is removed by checking the associated residual
obtained substituting their values in the basic primary
system (1.1.1).
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If both residuals are negligible, then the solution of the
problem at hand will be the one according to which the
distance of the receiver from the earth’s center equals the
terrestrial radius.

1.2 The iterative algorithm for processing four pseu-
dorange measurements

Let us consider the relationships between four pseudo-
range measurements r; , the known Cartesian geocentric

coordinates of four satellites (x;.y;,z;) (i=1,2.3.4) and
the four unknown parameters of the receiver (x,y,z,A):

\/(x'xl)2+(y'yl)2+(z'zl)2 +A=r (1.2.1)
‘/(;xz)2+(y-y2)2+(z-zq)2 +A =t, (1.2.2)
\ﬁx-x3)2+(y-y3)2+(z-z3)2+A=r3 (1.2.3)
JE-x0)? +(y-y)? +(2-24)% +A=14 (1.2.4)

A first procedure of iterative nature consists of the fol-

lowing phases:

a) assume one equation as “ pivot “

b) assume the value zero of the clock offset A in the
other three equations

¢) deduce from these three equations a trial value for the
Cartesian coordinates (x,y,z) of the receiver by
using the exact procedure reported in the paragraph
1.3

d) get a trial value of the clock offset AD from the ©
pivot equation”

¢) introduce this value A®in the four equations
(1.2.1)<(1.2.4), whose righthand sides (r;— A1)

take account of the clock offset

f) compute again the Cartesian geocentric coordinates
of the receiver by using the three equations of the
phase ¢) whose righthand side are equal to

(r; - A1)

g) by using the updated coordinates , the correction 5!
from the k-th  pivot “ equation associated with the
right-hand side (ry - A(l)) is computed. The clock

offset is wupdated via 8DVin the

A@ = AD 18D and the process is repeated till
when the values of unknown parameters do not
change significantly.

form

This procedure could not converge for every equation
assumed as “pivot”. Thus it is possible to exploit a
second iterative procedure in which a different “pivot

equation”is adopted at each iteration, i.e. the first one,
then the second, the third and the fourth one.

1.3 The exact procedure for processing three pseu-
dorange measurements

The algorithm for finding the intersection of three
spheres used in the determination of the receiver’s coor-
dinates, when its clock offset is slighted, is conceptually
similar to the one reported in the exact procedure for the
four pseudoranges. The relations between the pseudo-
range measurements, the known geocentric Cartesian
coordinates of the three satellites (x;,y;,z; ) and the three

unknown parameters (x, y,z) are fori=1,2,3:

Ja-x0+(y-y? +@-2)% =n, (13.1)

upon squaring the system is thus obtained for i=1,2,3 :

x2 +y2 +7? —2xix—2yiy—2ziz+(xi2 +yi2 +zf —ri2)= 0
(1.3.2)

Subtracting the third equation from the first one and the
second one we get the equation of one straight line:

ajx+byy+ciz+d; =0
(1.3.3)
a,x +byy+cyz+d, =0
where for i=1,2
a; = (X3-X;)
b; =(y3-¥p)
i = (23 - %) (1.3.4)
_ —(x§ +y§ +z§ - 32)+(x% +yi2 +é —riz)
1
2

From the system (1.3.3) we have:

L Ty o _|o B4 -z
vl (2 by |4y cz] |y 84, -cy2
(1.3.5)

from which the parametric equation of the same straight
line is obtained:

X =Xg + At
Yy =YotHt (1.3.6)
z=t

where
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x,=-od -pd,
Yo=-vd;-8d,
A=—(ac, +Bc,)
p=—(y c +8¢,)

1.3.7)

Substituting the (1.3.7) in the first equation of the system
(1.3.2) and performing some algebraic manipulations a
second degree equation in the unknown t is obtained:

g 2 +2g,t+g,=0 (13.8)
where
g = -t +p.2 +1
g, = —[(x1 ~x) A+ (¥ —yo)p,+zl] (1.3.9)

g; =(x ~x0)? +(n1 - ¥o) +7 —1f

The receiver’s coordinates associated with such value of t
are supplied by the system (1.3.6). Also this algorithm
can be characterized by a double solution and in this
evenience the ambiguity is removed as it is explained at
the end of paragraph 1.1

2. THE DATA PROCESSING PROGRAM

The data processing program, written in FORTRAN 77
for PC, consists of two principal sections:

1. reading the input data:

2. computing the GPS single point position.

The input data regard the satellite positions, its clock of-
fset and pseudorange measurements made by the recei-
ver.

The satellite’s positions and its clock offset are assumed
to be given from a SP3 ASCII format data file at
pseudorange measurement epochs. This format is
available by National Geodetic Survey (NGS) or other
agencies (for example International GPS Service for
Geodinamics (IGS) or National Imagery and Mapping
Agency NIMA) and it is particularly convenient for post-
processing of the single-receiver in the GPS applications.
Some observations relevant to the SP3 orbital format are
given in Appendix I

The pseudorange measurements are inputed from LST
Ashtech ASCII format data file. This file provides, in
particular, the epochs of measurements (seconds of
week) and the pseudoranges (in meters). For further
information about the Ashtech ASCII format LST see
Appendix II.

The flowchart of section 1 is shown in the Figure 1 .

/" OPEN AND READ
THE ORBITAL
DATA in SP3 NGS
\ FORMAT

'

7 OPEN AND READ
THE
OBSERVATIONS

DATA in LST
- ASHTECH FORMAT ~

/ ¢

/" REORDER XYZ
/" COORDINATES and

\ CLOCK OFFSET of
\,

SATELLITE

g

INPUT FILE:
EPOCH, SATELLITE,
XYZ, CLOCK OFFSET
and PSEUDORANGE

MEASUREMENTS

Fig. 1 : Flowchart of section 1.

In the table 1 we present an example of input data file at
epoch 16:37:35 of 31%/7/97.

SV X,Y.,Z

(meters)

4 | 17793439.324
-8176464.484
18108291.173
16 | 15756822.963
11394605.265
18140255.817
18 | 18115313.847
479663.739
19207135.164
19 | 25777488.288
6395349.493
2144500.015

Clock offset
(10**-9 sec)
39645.437

Pseudorange
(meters)
21170050.406

21834.677 | 20655099.547

3052.907 20153311.596

138186.014 | 22156354.849

Tab. 1: Input data at epoch 16:37:35 of 315t /7/97.

In the table 2 we present an example of output data at the
same epoch
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X Y zZ Clock
Offset
(meters) (meters) (meters) (meters)
4445679.278 | 903260.440 | 4468732.869 |48037.59

Tab.2: Output data at epoch 16:37:35 of 31% /7/97.

3. PRELIMINARY TEST

The data of two different sessions obtained via dual fre-
quency receivers have been elaborated.

In the first session the ephemerides data of four satellites
PRN 4,16,18,19 have been elaborated with 116 measu-
rement epochs at sampling rate of 1 second in 3 1%/7/97.
In the second session the numerical test have affected the
elaboration of the ephemerides’ data relative to the four
satellites PRN 4,18,24,29 and in relation to measurement
epochs of 15 minutes between 11.30 and 12.30 in

10%/7/95.

In the first session the exact procedure proposed by the
authors, the Newton’s method, the least square proce-
dure, the iterative procedure proposed by authors and the
Bancroft’s exact method provide the same estimate of the
receiver’s coordinates and of its clock offset.

In the first epoch of the second session it has been veri-
fied that the system of four nonlinear pseudorange equa-
tions admits a double solution (the same two solutions
have been obtained with the exact procedure proposed by
the authors and with the Bancroft’s exact method). In the
table 3 are reported the two solutions, the corresponding
maximum residuals and the distances from the origin of
the coordinate’s system.

X Maximum Distance
Y Residual from the Origin
zZ
(meters) (meters) (Km)
10082783.666
-1383713 873 7.45E-009 27959.935
26041905.007
4445043.205
903667.958 5.73E-009 6365.597
4466072.366

Tab.3: The two solutions of the first epoch of the

second session

Therefore it was necessary to adopt the criterion of the
distance from the earth’s center for avoiding the
ambiguity of the solution.

The acceptable solution (the second one) is identical to
those obtained with the Newton’s method and least
square solution, provided that the initial approximate
values are assumed sufficiently close to the real ones.
Conversely if the initial values are assumed close to
those relative to the unacceptable solution, the iterative

methods, available in the literature (Newton and least-
squares) converge indeed to the unacceptable solution.
This fact shows the limits of the traditional iterative
methods in the presence of a double solution: the
solution to which such methods converge to depends
upon the initial approximate values. The iterative
procedure proposed by the authors does not turn out to
be convergent, whatever is the chosen “pivot equation”.
The application of the previous methods yielded the
same results also for the other four epochs.

The computer time of the different algorithms have been
considered for measuring their rate of convergence. The
computations have been repeated 1000,10000 and finally
100000 times for each method and for each epoch of the
second session.

Several hardware platforms have been employed: 486
type computers with clock frequency 66 MHz and 100
MHz, Pentium to 100 MHz, 133 MHz and 200 MHz.
The computer times refer only to elaboration of the data:
the time for reading the input files is not taken into
account.

For the iterative methods reported in the literature the
computer time has been estimated for only two iterations;
conversely the computer time in the iterative method
proposed by the authors has been valued for 20
iterations.

The results are reported in the table 4 .

486 486 |PENT.|PENT.|PENT.

66 100 100 133 200

MHz | MHz | MHz | MHz | MHz

(msec) | (msec) | (msec) | (msec) | (msec)

EXACT 1.3 0.82 0.66 | 0.31 0.20

NEWTON | 1.9 1.2 094 | 0.49 0.30

LEAST- 4.3 2.6 1.6 1.1 0.61
SQUARES

ITERATIVH 11 7.1 5.8 2.6 1.7

ANCROF’II 1.69 1.03 0.85 | 0.40 0.25

Tab. 4 : Computing time of the different methods.
Times in the order of 0.001 sec. are deduced from the
table. This value is reduced for the Pentium computers.
Using the same hardware the exact method is faster 30
per cent than the Bancroft’s one, 50 per cent faster than
the Newton’s one and about three times faster than least
square’s one.

Conversely the longest computer time is referred to the
iterative method proposed by the authors.

From the pratical point of view the computing times
present unsignificant differences: however such diffe-
rences can be not negligible in the applications of the
Kinematic GPS, where the processing requires the ela-
boration of a large amount of data.
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4. CONCLUSIONS

The numerical simulations have shown that the exact
algorithm is particularly efficient and numerically stable
from the computational point of view.

The proposed iterative procedures do not necessarily
converge when the system of four nonlinear pseudorange
equations admits a double solution.

Further, in the case of the double solution also the tra-
ditional iterative methods (Newton, least squares) turn
out to be not convergent or converge to the wrong
solution. The convergence to the correct solution
depends upon the choice of the initial point of iteration,
which must be sufficiently close to the true receiver
position.

Finally in the case of the double solution and in the
presence of blunders, the iterative procedures (Newton,
least - squares procedure) turn out to be not convergent.
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APPENDIX I - SP3 GPS Orbital Format

The SP3 Orbital Format is a precise format GPS relative
to the ephemerides fixed by National Geodetic Survey
(Spofford and Remondi, 1997) and consists of a binary
and an ASCII format file. In the basic format, identified
by the P (Position) record flag, are reported the
coordinates (in km) X, Y, Z for each GPS satellite and
the satellite’s clock offset (in microsec) from GPS time.
The second optional record reported in the V flag
(Velocity) contains the velocities (in dm/sec) of each
satellite relative to datum XYZ and the clock rate of
changes (in 10 microsecond/second).

The orbits have been computed with reference to the
International Earth Rotation Service Terrestrial
Reference Frame 1994 (ITRF 94) or to the WGS84
system and are currently expected to be accurate to less
than 0.1 parts of million (2.6 m).

The clock offset is computed via the GPS Navigation
message and it has an accuracy of 1 picosecond. The
data storage into the files has been computed for full day,
for all GPS satellites of the constellation and with a
sampling rate of 15 minute epochs.

Below we report an example of SP3 ASCII V mode for-
mat file and we show in tab. 5 an SP3 ASCII format file.

#a V1997 73112 0 0.00000000 2 ORBIT ITR9%4
HLM IGS

## 916 388800.00000000 900.00000000 50660
0.5000000000000

+ 1 180000000000000000
++ 60000000000000000
%C CC CC CCC CCC CCCC CCCC CCCC CCCC CCCCC CCCCC COCCe
cecec¥oC CC CC CCC CCC CCCC CCCC CCCC CCCC CCCCC Ceeee
cecee ceecc%f 0.0000000 0.000000000 0.00000000000
0.000000000000000

/* RAPID ORBIT COMBINATION FROM WEIGHTED
AVERAGE OF:

/* cod emr esa gfz ngs sio

/* REFERENCED TO GPS CLOCK AND TO
WEIGHTED MEAN POLE:

* 1997 73112 0 0.00000000

P 18 11858.770600 -11675.915350 -20920.849700
3.033300

V 18 24100.533241 10123.680781 8074.045892
0.734118

* 1997 7311215 0.00000000

P 18 14005.368000 -10834.558500 -20019.661400
3.019900

V 18 23517.171233 8566.515372 11924.579061
0.507707

EOF
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Linen.1|PorV lYear, Month, Day | Hour, Minute, Second | Ephocs I Coord. System ] Agency
Line n. 2 | GPS week I Second of week | Epoc interval Mod Julian Day ] Fractional Day
Line n. 3 | Number of SVs | Identif. SV1 |Identif. SV2 |Identif. SV3 |.......... Identif. SVn
Linen. 4 { XY Z SVs Accuracy Accuracy Accuracy | .eeeiiinnns Accuracy
accuracy SV1 SV2 SV3 SVn
Line fromn. 5ton. 10 | Characters and Comment
Line n. 11 |Symbols | Year Month  |Day | Hour [Minute | Second
Linen. 12 |P SV1 X (km) Y (km) Z (km) Clock (microsecond)
Linen. 13 |V SV1 VX (dm/s) | VY (dm/s) | VZ (dm/s) | Clock rate (104 ps/s)
Linen. 14 |P SV2 X (km) Y (km) Z (km) Clock (microsecond)
Linen. 15 |V Sv2 VX (dm/s) | VY (dm/s) | VZ (dm/s) | Clock rate (10 ps/s)
Line 1 16 | oo e Lo e | e [
Line 0o 17 | oo e e e e [
Linen. 18 |P SVn X (km) Y (km) Z (km) Clock (microsecond)
Linen. 19 |V SVn VX (dm/s) | VY (dm/s) | VZ (dm/s) | Clock rate (104 ps/s)
Line n. 20 Repeat lines from line n. 11 until to line n. 19
End Line EOF
Tab. 5: SP3 ASCII format.

APPENDIX II - LST GPS Ashtech data format

The LST GPS Ashtech format is an efficient way to
convert a raw receiver data file, downloaded from a
receiver at the end of the measurements’ session into
an ASCII data file. We report in tab. 6 an example of
LST GPS Ashtech format file at epoch 16:37:35 of

315 /7/97. The file contains raw data, the carrier
phase and information about the code phase.

In particular at the first line it is recorded the number
of epochs collected from receiver and the beginning
and ending session times.

The second line contains the record number, the re-
ceiver number, the type, channel and nav boards fir-
mware versions and CA/L1/L2 capabilities.

In the third line are reported the receive time (second
of week), the satellite PRN, the number of channels,
the code pseudorange (in meters), the doppler effect
(in Hertz), the carrier phase (in cycles), the satellite e-
levation, the azimuth, the ratio signal to noise (in dbw)
and the observation type (CA/L1P/L2P). This record is
repeated as many times as the number of satellites.

VERSION RV RCVR___ | CHAN | NAV_ CAPABILITY
TYPE VER VER
Version: 3 Z-XI P3| 1D02 1100 LICP L2P
RECORD = 1 RECEIVE TIME = 405455.000000
SV CH |CDPHASE | DOPPL | CARRIER PH | EL | AZ | S/N [DTYPE
2 |4 21170050 | -8636960 |-706488.199 |56 [278 [ 191 | L1
21170051 | 8636960 | -706488.199 156 | L1P
21170056 | 6730098 | -545945.724 159 | L2P
19 |6 | 22156354 | -33143550 | -2216476.682 |39 | 176 [ 179 | LI
22156355 | -33143550 | -2216476.683 138 | LIP
22156364 | 25826142 | -1714775.369 144 | L2P
T8 18 | | || oo | veveee | e | oo
RECORD = 2 RECEIVE TIME = 405456.000000

Tab. 6 : Example of LST GPS Ashtech format file at epoch 16:37:35 of 3 1% /7/97.
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