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ABSTRACT

The coplanarity condition in photogrammetry is used for the determination of the relative position of one bundle with respect
to the other one. In a similar manner, in surveying, by imposing the coplanarity condition, in the intersection, the relative
orientation of one theodolite station can be determined, with respect to the other one without the link of distances neither of
directions, without the knowledge of the station co-ordinates. A minimum of three points must be observed. The final ground
co-ordinates are computed in a sort of absolute orientation, where at lest two control points in the final reference system
should be supplied. These two points can be surveyed by means of a simple metric tape. Approximated values of the
orientation angles should be given, with an approximation of some ten degrees. Approximated values for linear orientation
parameters can be set to zero. The larger component of the orientation errors is corrected in the absolute orientation The
described procedure is mainly helpful in short-range local triangulations. The coplanarity algorithm is described. This
approach overcomes the indetermination where the observed points and the station points lie on the same circle. Some
examples are shown and described. The achieved accuracy is comparable to the classical intersection. Compared with
photogrammetry, the algorithm is more efficient and less unstable, because it has less unknown orientation parameters.
Finally the procedure is helpful for education to show the students the differences from photogrammetry to surveying. The

triple intersection increases very much the redundancy.

1. INTRODUCTION

The equation of coplanarity in photogrammetry is used for
the determination of the five parameters of the relative
orientation i.e. for the determination of the relative position
of the two projective bundles formed by the photogrammetric
model. The co-ordinates of the intersected points are given by
the intersection of the corresponding projective straight lines.
The final co-ordinates in the absolute reference system are
got with a roto-translation with scale variation in the space. A
similar procedure can be employed in surveying also, in the
case of the intersection from two or more theodolite stations.
The advantage of such an approach consists in the possibility
to avoid to measure the directions and the distance linking the
two stations. The coplanarity finds the relative position of the
stations minimising, in the sense of the least squares, the
distance between the corresponding intersecting straight
lines. Such a distance is in practice the difference between the
elevations of the intersected point, elevations coming from
the two stations, analogue to the transversal parallax in
photogrammetry.

Let S1 and S2 be the two theodolite stations from where an
unknown point P (X,Y,Z) is intersected. Similarly to
photogrammetry, one can think that the theodolite from S,
and S, intersects in P’and in P two fictitious vertical

Fig. 1 - Intersection - The three coplanar vectors b, r; andr,..

image plates, parallel to each other, with projection centres in
S, and S, and principal distance ¢ .

The measures from S; and S, are the horizontal directions 1’
and 1” and the vertical angles @' and @".

In photogrammetry the two projective bundles are defined by 6
+ 6 =12 orientation parameters. In this case, for the particular
nature of the surveying measures, the orientation parameters
are only 4+4 =8 :

e the 3 + 3 co-ordinates of points of station

Xg, Yy Zg andsta Y, Z,

o the 2 unknown horizontal orientation angles &4’ and 3"
(bearings).

The determination of the 8 unknowns of orientation can be
solved in two steps:
1. relative orientation: solution of the 3 parameters of the

relative orientation of a station with respect to the other
one;

2. absolute orientation: a plane roto-translation with scale
variation in the plane (4 parameters) and a translation in
elevation (fifth parameter).
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line

Fig. 3 - Intersection with the sphericity and refraction effects

The coplanarity condition of the three vectors b rI and r2

The four points S, , S; P* and P are coplanar neglecting the (fig1)is
effect of sphericity and refraction.
Xg Yo Zg 1 0 0 0 1
XSZ -YS2 ZSZ 1 =0 ) bx by bz 1 =0 @)
X, Y. Z, 1 X, Y. Z, 1
Xp Y. Zp 1 Xp Yo Zp 1
where Xp, Yo Zp and Xp., Yo Zp. arethe or for known properties of the determinants:
co-ordinates of the image points P' and P". Let’s put the b b b
origin of the reference system in the first station point S;: the * y z
second station point S, has co-ordinates equal to the Xp Y. Z.|=0 A3)
1
components (b, ,b,,b,) of the base b (figs. 1 and 2). X, Y. Z,.

The coplanarity condition of the points S;,S,,P’, P" becomes: . o )
Again for the proprieties of the determinants one can subtract

the first row to the last one.
!The adopted reference systems in the present note are bx by bz
(fig.1). -
e (X,Y,2) absolute co-ordinates X k Z |=0 @
o (X',Y',Z') co-ordinates relative (with origin in (X--b) &-B) (&b
Sy ,
o (%', ¥y, z-)’ (x",y",z") systems parallel to Let’s suppose to have two new ‘ref.erence syste.ms
(X',Y',Z").,with origin respectively in S, and S,. (x',y',2),  (x",y",2") with origin in the two station
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points and parallel to the relative reference system x'=c-tan(§; +1I', ) x"=c-tan(3", +I",)
(X',Y',Z') (fig.2), then the coplanarity condition

becomes: ®)
b, b, b, y'=y'=c ©)
x y z'|=0 (5) and the elevations
x" yn 2" = -c_M
that can be written: cos(J +1')
0o 5 -b|[¢ Z'= ic—‘l,t,gL" (10)
¥ v 2|5 0 b ||y]co © cos(§+1")
5 —h o ||z ignoring the sphericity and refraction effects.
y x
. cotgy
that d 1 d . = . ! —_— . P .
'eve;)pe 'glves" o ) f=-b,1(F+TI )+co.(‘9+l)by taf9+")+b, - taf g +T)
-y'bx"+z'b x"+x'b,y"-z'b y"-x'b,z"+y'b z"=0
™ o, Dy g0
cofF+0) * cof9H") ”
+_Q{g'_ bx —
cofJ +1")

an
We can set the fictitious principal distance C equal to the unit

and divide by bx €q.(2), homogeneous in the unknown

parameters, setting 3, =by/bx and fB,=b,/b,; eq

(11) becomes:

Fig. 4 - The fictitious “plate” co-ordinates  x,y,z and
the observed quantities | , @ and the unknown orientation
8

Each couple of measures [/ and @ corresponds to a
couple of fictitious plate co-ordinates x, z . All the “image
plate” points have equal ordinate y=c. Then it holds (fig.4)

f=-5, -tg(.9"+l")+——c—0£—¢'—ﬂy -tan(S"+1") + B, -tan(§' +1")

cos(9'+1")
cotg @’ cotg ¢" cotg " 12
- e B, tan(9' +1)+—=8 =
cos(8" +1') cos(9"+I") cos(8" +1")
Fig. 5 - The observed point P is in the opposite side that in fig. 1
Differently from photogrammetry, where all the object points the station point. The (12) is still valid; in fact in eq.(10)
are on the same side of the photogram and projection centre, COS( I+ l) becomes negative and also the co-

in this case the object point P can be placed anywhere around ordinate plate Z is negative (fig.5).
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2. DETERMINATION OF THE PARAMETERS OF THE
RELATIVE ORIENTATION
The four parameters of the relative orientation are

The equation of coplanarity (11) is not linear in the unknowns.
Its Taylor’s expansion is, indicated with f o the initial
approximated value of the function f :

g, 9", B, e 3, - Only three of them are
independent. .
g g A g
+Af = f, +—d ¥ +—=—d 9" +—=—db_+——db,+——db, =0 13
Tty = 1o+ 5@t G g et T, e
The partial derivatives are:
g _ cotge"sin(F+l') B.
= g H" )+ —E——+
25~ esi@n) DO e
in(9 +1' B, -cotgg" @
_ 2Sln( + ) _ y - =c'-[—t'bx+(x"t'—z")by+bz]
cos’(§' +1')-tang’ cos(§'+I")cos” (F+I')
g __ -B B, cotgg’
39"  cos*(9"+1")  cos(F+I")cos’(§"+I") )
tg(F+0") B, - sin(9" +1" in(9”+1"
_ g( 2)ﬂy Sln( + )+ 2.S'll’l”(t.g +l) - ——c"-—t"bx+(x't"—z")by+bz]
cos’(9"+1")-1go" cos*(§"+1")-tang
g __ cogy coigp" ., a6
ob, cos(9'+l') cos(9"+I")
9 _ O8O (S 41" —tan(F +1') = X" 2—x' 2" an
b, cos(F+l')
g =—tan(9" +1") + tan(§' +1") = x'-x" (18)
having set:
a'= 19'+l' all= 3||+Ill zl= COtg? Z"= COtg?
cosa cosa
x'=tan a' x"=tana" c'=1/cos’ a' c"=1/cos’a"
¢'= sina, [tan ¢' "= sina"[tan " . (19)
Equ.(11)is then:
f=("-2')-b,+(x"2'-x'z")-b, +(x'-x")-b, =0 (20)

Every point P supplies one observation equation. At least
three points (not aligned ) are needed to compute the
orientation parameters.

1t could seem that there could be as many types of relative
orientation as many are the combinations of 4 elements 3 to

4
3 say ( ?J =4, but in order to distinguish the vertical

measures from the planimetric ones, two types only are

feasible: essentially we can put ,By = by / b.=0
and take the remaining three parameters
S, 9", e P, asunknowns, or vice-versa set

9’ =0 and the unknowns become §", S, e B,.

Similarly to photogrammetry, the two types of orientation
could be called symmetric and asymmetric (fig. 6).
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RELATIVE ORIENTATION
v Symmetric Asymmetric
Vs pg
Ys) 4
S ’l?a) 0
(s, %
\ X’ S (a)
G b s, - b
7 %\L\ Vs
& b, b, &
)

X’

Fig. 6 - The symmetric relative orientation (left) and the asymmetric R.O. (right)

1. Symmetric Relative Orientation:

14 ”
(5)> 3 > € B.
2. Asymmetric Relative Orientation
‘9"(a) > ﬂ y? € ﬂ z

It is possible to pass from the parameters of the one type to
the other one (fig.6). In fact it is:

‘92@ = '9'(S) - ‘92.9) b.=b.cos .9'(s)

b, =b.sin$, @21
Obviously the solution is iterative. We need to supply
approximate values of the parameters. In the performed tests
the convergence was achieved for initial values different by
30° from the final values (fig.11) also. The initial value of the

normalised vertical component was set 3, = 0.

The procedure appears then useful mainly in local
triangulations where there are large excursions in the vertical
directions, as in the case of the determination of the control
points for close-range photogrammetry. In this case in
addition it is not necessary a universal reference system but
only a locale one.

One could think that the instability condition is when all the
points lie on the same plane. As matter of fact, the test Mire
was prepared just to demonstrate the critical condition,
arranging a set of the targets and the instrumental centres in
the same horizontal plane. Indeed we got the best results, the
convergence with the largest difference of the approximated
values for the parameters, from their final values.
Paradoxically we get the best conditionumber. Further
investigations must be carried out, but up to now we can say
that with respect to the analogue photogrammetric problem,
the orientation for coplanarity in surveying is less sensitive
to the critical instability conditions (see par. 5).

3. COMPUTATION OF THE RELATIVE CO-
ORDINATES

The relative co-ordinates of an intersected point P
(X' ,Y',,Z" ) are derived by solving the two straight
lines equations (fig. 1):

{

X'p=Yp - tan($'+1l') =0
X', =Y, -tan(9"+1") = b, ~ b, - tan(9"+I")

22
and as average of the two elevations coming from the two
station points

Z' = 417 ;ZZ (23)
where
Z,=d,-cotgy', Z,=d, -cotgg"+b,

@9

being d, and d, thehorizontal distances of P

from S, and S, , computed with the plane co-ordinates.
Equs.(22) and (24) can be linearised as function of the
unknown co-ordinates X ;,Yp,Z,, of the point P.

1 —tang

0]|dX, &
X  @% |l { }
——awgp — 5 agg 1| 7| |-
] a agp Z 2
(25)
having set
gy = Xp -1 tang, — X +71 tana, -

g, =2Z;—d-cotgp,—Zg

with X, Yy, Zs, the relative co-ordinates of the i.th station.
The difference between the elevations Z; and Z, is similar to
the photogrammetric transversal parallax D,

The analogy can be extended to the bad formation of the
“model”, the so-called model deformation with a remarkable
difference: the worst deformation in photogrammetry derives
from the bad solution of the relative rotation @ around the
taking base. In this case such a possibility do not exist because
©=0, for the nature itself of the angular measurements.
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Fig. 7- Errors dP in the estimate of the co-ordinates of P due to an orientation error d 9.

The only worried deformation derives then from the bad
solution of the rotations transversal to the base J and 3"

that results in an error , OP = &X7 +5Y]+6Zk with

R _] , and k  versors of the co-ordinate axes. In

the aerophotogrammetric model, for almost flat terrain, the
larger component is the one in direction of the depth, that is
the direction orthogonal to the base that in this case,
corresponds to the ¥ . 2

Fig. 8 - Errors in the estimate of the co-ordinates caused by
orientation errors &9 (second order component) in case of
plane model.

gy

T

%)

%In a equation system Ax = b where A is real, symmetric of

order n, let be Av; = A;v; where v; é the i.th eigenvector of

A and ); its associate eigenvalue . Let’s put in increasing

order the eigenvalues of A :

0<|4,|<]4,| <...<(4,)-

The conditionumber of A , indicated with cond (4) is defined
A

as: cond(A) = u

Z

Obviously cond(A) 2 1 foreach A; cond(A) =1

where A is orthogonal. The matrix A is illconditioned when

cond(A) >>1 (es.10%). When A is singular A, = 0 and

then cond( A) = c©. In general, the larger the

conditionumber, the worse is the solution of the system .
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5

2
Fig. 9 a- Deformation from an orientation ervor d9=1g in
the file Fontana the absolute orientation has the station
points S; and S, as control points.

We consider here the case of the almost flat model only, as

can be the one given by the facade of a building. As a matter

of fact the most frequent application for the type of the here-

described orientation is just this one. Then we can assess that

o the major component of the deformation is just in
orthogonal direction to the base;

4. ABSOLUTE ORIENTATION

The model co-ordinates are transformed by means the well
known similitude transformation, that is a roto-translation
with scale variation with 5 parameters:

X cosK —-sinK || X'| |Xg
=A . + (28)
¥ sinK cosK | | Y' ¥y
having set

a=A-cosK; b=-A-sinK
29)

\\ I
A _B
N /
|
¥
5 A
X
VL
\\ I
A. »8
AN /
Y
Sy 5%

X

Fig. 9b -. The points A and B are the control points: the roto-
translation has taken place from the relative system to the
absolute system.

e that such a component is given by the sum of a linear term
and by a second order term in the three variables X,Y and
Z.

An appropriate absolute orientation (see next par. 4, 5 and 7)

can absorb the linear component of the errors.

x| Jesk -sink o][x] [x,

V'|=A-|siPK cosK O ¥ [+ F

z o o 1|z |z
27
The transformation of the co-ordinates of the a point
P(X,Y,Z) occurs in two separated phases:
e planimetry (4 parameters: 1 rotation K, 1 coefficient of
scale A, 2 translations X g, , ¥5,) -

e altimetry (1 translation Z,)
[Z]=2-[2]+[Z]
(30
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The estimate of the parameters of the (28) can be solved in a
least squares procedure when the known points are 3 or
more. Equs. (28) are written, reordering with respect to the
unknown parameters:

At least two points in the final system known in planimetry
and a point known in elevation are needed. In particular we
can fix the exterior absolute reference system passing through
two points whose horizontal distance only has been measured
with a metric tape, having set the origin in the first point and
the abscissa of the second point equal to the measured
distance, procedure particularly simple in the case of

4.1 The effect of sphericity and refraction

_Oopc  Ad

&'7 .2 . 2
sin“gp 2Rsin“@

(32)
derived by differentiating the z=c.cotg@ and by
substituting 6@ =d / 2R , with R radius of the local

sphere. The correction (32) requires on the contrary the
preventive knowledge of the scale coefficient A, which is of

the same order of magnitude of d . (For @ =90° and

A ~d we get the well-known expression of the sphericity
effect).

d

Fig.10- Corrections for refraction to the fictitious plate
co-ordinate z

5. PRACTICAL ESPERIENCES

Seven surveys are here presented. Experiences of
computation have been made either with data file already
available either with expressly prepared observations. All the
surveys have been previously adjusted to least squares with
the programme RETE and with the three-dimensional
adjustment with the programme 3D, except the one called
M.Sicuro test. The co-ordinates have been then compared
with those derived by coplanarity. In table 1 are shown the
values RMS of the differences in X, Y and Z.

a

X] [x v 1 0]]| b

= . 31)
Y| |y -x o 1| |xg
YSI

architectonic survey. Among the known points are included the
theodolite stations also.

Opposite to the A.O. of the photogrammetric model, no
iteration is needed, because the equations (28) and (30) are
linear in the unknowns.

An appropriate choice of the reference points can bring to
satisfying results.

In order to impose the coplanarity of the four points S, , S, P’
and P” it is necessary to correct previously the fictitious plate
co-ordinates. Such a correction in fact is (fig.10):

If the distances of the observed point P from the station
points S and S are equal, we can neglect from such a
correction to impose the coplanarity, except afterwards
take into account the effect of the sphericity and
refraction

(l_k)dZ
2R

in the absolute orientation where we can use the (22) where the
distances are already at terrain scale and R is the radius of the
local sphere and k is the coefficient of refraction.

a-5 .

(33)

Z, =d, -cotgp'+

(34)
" 1-k

: Z,=d, cotgp"+b, +£—K)d:

e The experiences nn. 1, 2 and 6 named Ss.Annunziata,
Fontana and Spoleto refer to close-range triangulations to
short distance for the architectural projects.

e Thetestn 5 M.Sicuro is taken from a triangulation work
for the photogrammetric  control for an
aerophotogrammetric 1/1000 scale map. The distances
were in the order of few kilometres A similar case, non-
present in the table, was not successful but the distances
were much larger.

e The tests nn. 3 and 4, called Mire and Cerchio, have been
expressly prepared to test the programme.
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e The cases nn. 6 and 7, Spoleto and Diga are relative to
the triple intersection also. For an architectural survey of
the facade of a building in Spoleto 22 points have been
signalised and then intersected from three stations. In a
dike the control network is formed by a series of 15
signalised points. The measures of angles and distances
are from three stations S;,S,, and S;. These results are
described and commented in 8. > We have taken into
consideration here the simple intersection from the two
most external stations.

In order to check whether the errors of the co-ordinates are

significantly different from zero, these errors have been

tested. For every case the sample mean s.d. O-Xf has been
derived from the s.d. O of the co-ordinates traditionally

(o)
derived. O = X __  The errors have been normalised

Jn-1

t= ‘:_—X- and the normalised value has been compared with
the cnt)l{cal value t*;os taken from the tables of the t of
Student with a level of significance equal to the 5%. If t<
t*905 the null hypothesis Hy holds and thatis E{z} = 0 in
the contrary case the alternative hypothesis H; holds,
Eft}>0.

In the graph fig 11 the number of iterations needed to the
convergence is shown in the 7 studied cases for increasing
values of the difference between the value approximate initial
of orientation for the two stations and the one final ones. The
angles are expressed in grades. The graph is interrupted in
correspondence of the abortion.

0

—®
P= 348 ®

P=84
uﬁ O

iterozioni
p=2 5
0

approx. iniz.

Fig. 11 - Number of needed iterations as function of the
approximated values of the orientations -

S 10 20 30

In order to demonstrate the importance of a convenient
choice of the points with whom make the Absolute
Orientation, we made the following test:

*The two last data files have been supplied by ing. Delfo
Palpacelli , Macerata
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in the case 2) Fontana, the 15 points are placed along the
walls nearly cylindrical. Errors of 1 degree in the orientation
of the S; and of -1 g in the S, have been simulated: first the
A.O. has been carried out utilising the terrain co-ordinates of
the points of station. The behaviour of the errors is the one
shown in fig. 9a. Afterwards the A.O. has been made with the
control points A and B. The final errors are very much
reduced (fig. 9b). It still remains nevertheless a systematic
error.

Similarly we operate in the Diga test, simulating an
orientation error of opposite sign in the two external stations
(fig. 19). If the A.O. is around the base S;S,, we have a
remarkable systematism. When on the contrary the A.O.
takes place with A and B control points, the errors are
reduced to non-linear part, while the errors are transferred to
the station points.

As already mentioned, to verify the instability of
computation, 29 signals have been placed on the 4 walls of
the laboratory with the help of a spirit level. The two
theodolite stations had the instrumental centre on the same
horizontal plane of a series of signals. In this way we thought
to create the conditions of indetermination for the
computation of orientation. Although this, the computation
was successful with good accuracy, (table 1). With respect to
the similar photogrammetric problem, the orientation in
surveying for coplanarity seems then to be less sensitive to
the critical conditions of numerical instability.

5.1 - Comparison by means of the non-parametric tests

The following tests have been carried out to check the
correspondence of the medians of the distributions obtained
with the coplanarity and the classical method of intersection.
The co-ordinate differences have been computed. The non-
parametric tests should be more suitable for non normal
distributions distributions. On the other end the reduced
amount of samples doesn’t allow to use the Pearson test to
verify the normality of their distribution. Where the sample is
consistent the Pearson test was applied. It follows the scheme
of the tests.

In the table 4 the results of the tests are summarised.



Pearson Test on the curtosis

indoav

t Student Test for coupled

comnlac

Il

Quantile Test 0,50 to check the
svmmetrv

=

Signum Test

gl

Wilcoxon signed Ranks Test

0

Table 1 - Double Intersection - Results

H

T

51
&

gt

Il

N | Work npun | estim. dir| estim.dir.| obser.Dir.| dteta |[dX.dY, |test cond(A)
€3] (8 (2 (& |47 .(m)
1 | Ssannun 14 99.6647 | £0.0089 99.6789 | +0.0142 0.008 256.0
298.3049 | +0.0101 298.3170| +0.0121 0.004| H,
0.007
2 |Fontana (*) |15 100.0142 | +0.0453 99.9985( -0.0157 0.001 112.8
299.7149 | +0.0453 299.7450 | +0.0301 0.001| H,
0.001
3 | Mire 29 190.9140 | £0.0024 1909117 -0.0023 0.001 17.5
* 357.7415 | 40.0019 357.7361| -0.0054 0.001| H,
0.000
4 | Cerchio(*) |7 318.5005 | +0.0166 318.5093 | +0.0088 0.001 263.8
50.5684 | +0.0095 50.5658  -0.0026 0.001| H,
0.000
5 |Msicuro |5- 315.8845 | £0.0068 315.8839 | -0.0006 0.035 6436
*** 39.8715 | +0.0248 39.8792 | +0.0077 0.011| H,
0.065
6 | Spoleto(*) |22 76.4851 | £0.0056 76.4778 | -0.0073 0.003 278
** 273.9936 | +0.0071 273.9889 | -0.0047 0.001| H,
0.002
7 | Diga(*) 15 99.9999 | £0.0017 100.0001 | -0.0002 0.004 290.3
** 300.0012 | +0.0016 300.0001 | -+0.0011 0.006| H,
0.012
(*)Signalised Points (***) Large distances surveying

(**) Intersection from two stations only

(3) Intersection from three stations
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Table 2 — Results of the non parametric tests

Quanti Wilco
le Test xon
Test
File N. pun. 0,50
Ox Oy Oz Ox Oy
Ssasunn 16 HO HO H1 HO HO
Fontana 17 H1I HO HO / HO
Mire 29 HO HO H1 HO Hl
Cerchio 9 HO HI1 / HO /
Msicuro 5 HO HO HO Hl H1
Spoleto 22 HO HO HO H1 H1
Diga 15 HO HO HO H1 H1

These results have been compared with the results coming
from the parametric statistics, in particular they have been

Table 3- T Test with coupled samples

File N.pun DOx Oy Oz
Ssasunn 16 HO HO HO
Fontana 17 HO HO HO
Mire 29 HO Hl H1
Cerchio 9 HO HO /

Msicuro 5 HO HO HO
Spoleto 22 Hl Hl Hl
Diga 15 H1 H1 HO

As we can see, the results are essentially the same where the
sample is sufficiently consistent (a dozen at least).

6. Indetermination in the plane resection

In the plane resection (Snellius- Pothenot problem) there is
indetermination when the three observed points P,, P,, P; and
the station S, lie on the same circle. Such an indetermination
is coped by following the here described approach. In the
experiences named Cerchio we verified that with the here
described approach this indetermination do not take place.
None of the two independent stations could be determined.
Some targets have been placed on the floor along a circle and
also the measuring stations have been placed along the
circumference. Also the value of the conditionnumber, non-
particularly high with respect to the other cases (264), do not
show the possible illconditioning of the solving system.

That can be easily explained: in fact, while from any point of
the circle the arcs are seen under the same angles, there is
only one position that minimises the elevation differences.

Oz

HO

Hl
H1
HO

Signu
m Test
Correction
Ox Oy Oz Ox Oy Oz
/ / HO / / /
HO / / / / /
H1 / 0,002 -0,001
/ H1 / / 0oog /
O
/ / / 0,103 0,094 -0,03
/ / / 0,003 -0,001 -0,002
/ / / -0,002 -0,011 /

compared with those get from t test for coupled tests, that is
the equivalent parametric test. The table summarises the
results:

Fig. 12 - Case of indetermination in the resection

7. THE INTERSECTION FROM THREE STATIONS

In case of a triple intersection, say intersection of the generic
point P from three stations S;, S, and S; , the interested planed
are three (fig.13). For any observed point we can then write
three condition equations. The unknowns are 10 in this case,
say :
o the three orientations angles

3
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e the two components of one of the three bases

2
e the three components of the remaining two bases 3x2=
6
S3

The triple intersection

ond the corresponding (3) b.f ég (2)

planes

6,
Y 1) 2

Fig. 14 - Triple Intersection : the three bases
Fig. 13 - Triple intersection: the intersected planes

A We can select the asymmetric orientations and then set equal
Vi to zero the orientation of one of the three stations.
S3
v
bs b
2
7 7
,19(1) 9 (2)
b1 o X’
S7 S2

Fig. 15 - Selected reference system

Alternatively we can fix the reference system as in figs. 15

22t bason provistonal ial vlues are given o s o B = X'G+1)- X'0)
ordinates of the three vertices. bii) =Y@+1)-Y (1) (35)
P b =Z'(+1)-Z'()
Because of the chosen system, bil) =1 and

b,(tl) = 0. To the coplanarity equations three
conditions must be added, relative to the components in the

three directions of the three bases.
e . =B0 +B0 450 =0
- 7 g, =bP +b5P +5 =0 (36)
g, =50 +5® +3 = 0
¢ be L " V4 In reality not all the 10 parameters of orientation are
_la/a 2 A\ ingfpendent: In fact set o
o 7 b’ =1 and by =0 from the (36) we have

G _1_p@ 3 — (@3]
<:// N S b® =1-B b = —B and

b(3) — _(b(l) +b(2)) (37

Fig. 16 - The three intersecting straight lines .
Then the independent parameters are only the following

Let’s define a positive versus in the triangle sides. The seven.
components (with sign) of the three bases:
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9, 9, % PV p@D  pD  pD and the three linearised coplanarity conditions are:
> ’ 5 z 9

x’y’z’

_ _ [a9®]
@rl @rl @rl d9(2)
29 59@ ’ aP ' ' ’ dg® — fO
g, g, g, g, qz A dp® | == f@ 38
290 590 - @ Z@ @ A (38)
x y z db 2 _ £
g, g & F 4 4 | || L
98M : 39 AV HD  HB  HP dby
L z x y z o db(z)
or:
[d9® ]
d9®
a, a, . a, . . . dg® | |-f®
Ay Gy . Gy Ay Ay |- dbz(l) =\ -1 0(2) (39
a; - Gy Q3 Ay Q3 Ay | dba(:z) - 0(3)
db®
db®
For the i.th base of ending points the i and i+ the coefficients from the (39) are:
) )
g‘i — - 1 by tg(9i+l + li+l )szn(gl +lx) +bz(’) +
a8, cos” (9, +1) 129,
bPsin(9. +1, ¥ . . .
- S +4) - p =6 '[_ 1.5 + (X1, = 2,,)B)) +bz(')]
120, 18P 08(5,, +1,,1) g
q; — 1 _ by(v')tg('g: +li)Sin("9i+l +li+1) —b(i) +
5'9i+1 0052 ('9i+1 + li+1 ) tg¢i+l ’
bPsin(9,,, +1, b . o
» Sln('9,+| + ,+1) + ¥ =-c,, _[_ 3 lb(z) +(x.t. . —Z.)b(') +b(z)]
tg¢i+l tg¢l COS(3i+li) i+ +17x 171+ i y z
@:i' =" 1 + l - =2, -2
ébx,) 1gp,cos(4, +1,) 1g8p,,cos(9,, +1,))
¥ _ gumthy) __ w(Stl)
@}(j) 1gp; cos(9; +1,) 1gg,, cos(9,, +1,,) S
Z(ii) =-18(8,, +1,)+18(9 +1)=x - x,, (40)
having set: x; = tan a, Xip = ta'nai+l
ai = 9i +ll ai+l = 3i+1 +li+1 ci — l/cos2 ai ci+] = l/cos2 ai+l
z, = %:;g;@-_ z,, = E(%)t;g‘%ﬂ. t, = sina; [tan @, t,, =sina, [tang,, .
i i+1

41)
The function (11) is written again:
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fi =(zn— zz')'bg) + (xi+lzi - xizi+1) 'bf) +(x; - xi+l)'bz(i) =0 !

42)

The coplanarity condition relative to the third base, keeping
in mind the (37), becomes:

[ =Gz )0z 6287~ )E )=

@3)
Its partial derivatives are:
—0%3,7= (x, - %)) %— (5 -2,)
2;32) (x,2;, — x,2,)

%5 (x,-x,) (44)

In the (38) and (39) all the non-indicated coefficients are
equal to zero. To solve for the 7 unknowns three points at
least must be observed, with a redundancy equal to 2 (in the
case of intersection only from two stations the redundancy
would be zero).

With n observed points ( m= observ. dir., ¢ =equat. ; u=

unknowns ; » =redun.:)

from 2 stations: m=2n u=2, c¢=n, r=n-2
m=2(n-1)

from 3 stations: m=3n u=7, c=3n, r=3n-7
m=(3n-7)

fig. 17- Number of the observed points and number of

observations

55

=3
A
S
S [
o /£
>3 (=)
4 Ny
7
=
7/ /
7 ’
s S 3 =) ’.:
7 poirts

From the graph in fig. 17 one can see that when 7> 5 for
increasing the redundancy it is convenient to set up three
stations better than enlarge the number of the observed points
from two stations.

8. Practical experiences. Example n. 6 (Spoleto) and n. 7
(Diga)

The tests ns. 6 and 7 have been carried out also with the
triple intersection. For both tested cases have been carried out
three computations of orientation:

A - simple intersection from the two most exterior stations

1. - with four points

2. -with all the available points

B - triple intersection with all the available points.
The results do not differ very much between them. The triple
intersection improves the estimate of the orientations,
nevertheless the absolute orientation makes the co-ordinates of
the points not to be different. In fact also with the simple
intersection, with the least number of the points (four) - case
Al-, the residuals on the points are not practically different
from those obtained with the triple intersection and with all the
available points.

In fig. 19 on the left the absolute orientation was achieved by
imposing the terrain co-ordinates of the stations S,,S,. On the
right, on the contrary the points A and B have been utilised as
control points for the absolute orientation . The errors on the 15
points are strongly reduced, whilst are increased on the station
pOlntS 81,82.

Fig. 18 - Spoleto Test. On the left the orientation with control points S1S2, on the right the control points are A and B. The

errors are amplified 300 times.
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A% — B

LR LT LR

Fig.19 - Diga Test - Orientation error d9=1g. The errors are amplified
100 times. On the left the orientation as control points, the station points S; and S, . On the right the control points are the

points A and B.

Table 4 - Double intersection Vs. Triple intersection - Results

N | Work n.pun dir.stim. dirstim. | dirosser.| dteta |dX,dY, |[test cond(A)
@) €)) €3] (® 1dZ (m)
A | Spoleto 4 76.4851 | 40.0056 76.4778 | -0.0072 0.003 321
1 | Two 273.9936 | +0.0071 273.9889| -0.0048 0001 H,
0.002
A | Spoleto 22 76.4851 | +0.0006 76.4778 | -0.0072 0.005 278
2 | Two 273.9936 | +0.0031 273.9889| -0.0048 0.002| H,
0.002
B | Spoleto 22 76.4850 | £0.0006 76.4778 | -0.0072 0.001 150
Three 273.9937 | +0.0018 273.9889| -0.0048 0.001 H,
99.8928 | +0.0028 99.8933| +0.0005|  0.001
A |Diga 4 99.9993 | +0.0017 100.0001 | -0.0008 0.002 360
1 | Two 300.0009 | +0.0016 300.0001 | +0.0002 0.011| H,
0.013
A | Diga 15 99.9999 | £0.0012 100.0001 | -0.0008 0.004 290
2 | Two 300.0012 | +0.0008 300.0001 | +0.0002 0.006| H,
0.012
B | Diga 15 100.0009 | +0.0017 100.0001 | -0.0008 0.002 165
Three 299.9999 | +0.0016 300.0001| +0.0002 0.003| H,
160.6867 | +0.0141 160.6923 | +0.0056 0.001
(*)Signalised points

9. CONCLUSIONS

With the here described procedure the surveying
operations are simplified for the intersection. In fact the
needed measuring equipment is reduced to a theodolite, a
tripod and a metric tape. One can avoid to connect the theolite
stations, either with angular measurements or distances, the
instrument height is not needed, the full traversing equipment
is not needed as well. In all the tested cases we got an
accuracy in the estimate of the bearings equivalent to its direct
measure. Few points are sufficient for the orientation. The
initial approximate bearings can be supplied with an
approximation of some ten degrees. Only in one case the
computation was not successful, the distances between the
points were in the order of some kilometres. The procedure is
mostly convenient for local triangulations. A good distribution
of the observed points and a very good measure of the vertical
angles are essential. Few points for the convergence of the
computation of orientation are enough. With a good
distribution of the control points for the absolute orientation,
the results of the estimate of the co-ordinates of the surveyed

points is absolutely equivalent to those of a traditional survey.
The not perfect solution of the parameters of orientation brings
to a systematic error in the estimate of the co-ordinates of the
intersected points. The errors are reduced to acceptable values,
say of the same order of magnitude of the s.d. of the classical
intersection, when the absolute orientation takes place with
well positioned control points. The most probable application
of the described procedure is in the survey of control points
for close-range photogrammetry.

The triple intersection increases very much the redundancy but
do not improve further the quality of the results.
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