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ABSTRACT

The aim of this work is to extract and match line segments from terns of images and to compute the spatial coordinates
of the endpoints of their intersection in object space, to improve the automatic reconstruction of objects, complementing
area-based methods. To this aim, three images are used to increase reliability. The feature extraction strategy is based on
the (Burns et al., 1986) approach. The line segments so found are first grouped in terns made of likely homologous,
based on the a priori infomation on exterior orientation and on object shape (approximate DEM of the object). The set
of candidates is then checked to highlight inconsistencies between the hypothesized terns, by intersecting the image rays
of representative points selected on the line segments. The method, applied to simulated examples, works correctly; its
application to a set of images in an architectural environment is satisfactory, though errors of omission and commission

are still present.

1. INTRODUCTION
Algorithms and techniques for 3D  object
reconstruction, namely the determination of the object
shape by mono, stereo and multiple images, are
grouped in two broad areas: signal based and feature
based. Experience showed performance, merits and
limits of both methods in different areas of application.
It is well established that correlation methods are very
accurate in industrial photogrammetry, where targets
are routinely used to squeeze the highest accuracy, and
very productive in aerial photogrammetry, where DTM
can be produced from measurements of tens of
thousands of points per image. The performance and
the fidelity of the object representation, though, is less
satisfactory the more we move towards large scale
images, specially in urban areas, where the implicit
assumption of smoothness of the object is violated.
This has a twofold impact over the results obtained by
correlation methods: the hypothesis of locally plane
object surface of the Ls. matching doesn’t hold,
therefore the localization of the homologous point is
less reliable; besides, the number and the distribution of
the points measured on the surface may not be enough
to define the object breaklines (edges, corners, etc...).
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In this respect, the choice of an appropriate
interpolation method is also very important, since the
degree of smoothness of the method will generally
affect the result. No matter the method, though, it must
be noted that the object shape will be correctly
reproduced only if the sampling frequency is adjusted
to object roughness: in other words, there is no
interpolation approach capable of make up for lacking
of data.

In man made objects and particularly in buildings most
edges are in fact straight lines, therefore very simple to
delineate (just the endpoints are necessary) by a human
operator. In contrast to that, if the same edge is to be
delineated by area based methods with the same
accuracy, hundreds of points may be required over the
two sides of the edge. Matching algorithms based on
feature extraction (mainly of linear features), are
therefore potentially more economic and accurate in
object delineation (Haala,1995; Perdersini et al., 1996;
Medioni, Nevatia, 1984). The common scheme of all
these strategies begins with some feature extraction
technique, where the edges in the image are detected
and classified, leading to a vector image description.
Then, based on the available a-priori information (e.g.
imaging geometry, object shape) line segments are
coupled or grouped in potentially matching sets and,



defining an appropriate cost function to weigh each set,
a minimum cost configuration is achieved, which
should correspond to the correct line association. Here
one more such algorithm is presented, where, to
increase reliability, line segments are extracted and
matched from three images.

2. FEATURE EXTRACTION
2.1 Image segmentation

The purpose of image segmentation is to group the
image pixels in regions satisfying a given criterium,
based on texture or edge properties. Here the latter
approach is used, taking into account either gradient
magnitude and gradient direction and is performed in
three steps.

1. Noise reduction by some operators. This is necessary
because the small mask used is very sensitive to
noise. Among the many operators available, capable
of dealing with image noise and at the same time to
preserve edge sharpness (Lemmens, Han, 1988;
Canny, 1986), we found the Conditional Averaging
Filter (CAF) satisfactory. To run CAF over the
image, a threshold must be fixed: this is done based
on the visual inspection of the results.

2. Image convolution with the gradient operator. Edge
pixels will be therefore identified by large gradient
magnitudes and a threshold must be introduced to
separate them from the background

3. Grouping pixels belonging to the same edge. To this
aim it can be noted that, as long as the gradient
orientation is constant between contiguous edge
pixels, the corresponding edge portion belongs to a
line segment.

No matter the mask used to approximate the g.v.

gradient vector, different threshold have to be fixed to

select edge pixels. Thoug the performance of edge
operators is sometimes very good, the segmentation
output still will be affected by image characteristics and
by the choice of these threshold values, either making
life easy for grouping algorithms or preventing them
from getting any acceptable outcome. Operators with
large masks tend to increase smoothing, loosing details;
small masks instead are very sensitive to noise. We used
the edge operator suggested by (Burns et al., 1986) with

a small 2x2 mask which allows also to recover gradient

orientation.

2.2 Linear feature extraction

We look for a description of the image contents based
on lines. This may be achieved in many ways, e.g. by
line following, Hough transform etc. (Ballard and
Brown, 1982); we opted for an alternative suggested by
(Burns et al., 1986), with minor changes. The concept is
the following: we get a line segment from each region
where the gradient magnitude is above a specified
threshold and its orientation is within a certain range.

The straight line to which the segment belongs will be
defined by the gravity centre of the area and by the
direction perpendicular to gradient orientation. The end
points of the segment will be determined by projecting
the points of the area over the straight line (Forlani et
al., 1996).

Since the most critical parameter in this stage is the
threshold for the gradient magnitude, we tried to get an
empirical rule capable of tying it to the actual dataset:
on the images we processed, the mean value of the
gradient magnitude proved to be satisfactory.

After the image gradient has been computed, the
orientation of the gradient in each pixel where the
magnitude exceed the threshold is computed and
assigned to a partition of the interval [0-2n]. The choice
of the number of partitions is often critical: too many
partitions lead to a very fragemented image; too few
partitions yield a rough approximation of the edge.
Either 12 or 24 partitions were used.

The set of all contiguous pixels belongin to the same
partition make the so-called support region of the edge.
The segment orientation is computed by the L-1 norm
(the median value of all orientation) while the gravity
centre is computed as a weighted mean, by using the
gradient magnitude to weight each contribution.

We have now a vector representation of the edges,
where each line segment is defined by its orientation, its
gravity centre, its end points; additional information on
the goodness of fit of the straight line to the support
region is provided by the dispersion of the orientation
values and the dispersion of the pixels about the straight
line.

3. 3D FEATURE MATCHING

Matching the features extracted in each image in the
previous processing stage is accomplished in two steps:
first, a preliminary list of terns of objects is built; then
the terns are collected in disconnected groups and their
mutual consistency is verified. To this aim, as already
stated, auxiliary information on object are necessary:
we assume the knowledge of the exterior orientation of
the images and an approximate object shape, given by a
DEM of the object itself and its surroundings.

3.1 The preliminary list of correspondencies

In order to select the line segments likely to be
corresponding, we begin comparing the images
pairwise. In turn, each image of the tern becomes the
reference and its line segments are projected over the
two other images, to define a local search window
where the homologous segment should lie. Let be a the
reference image, b and c¢ the second and third images.
The limits of the search window relative to a specific
line ; are defined as follows (see Fig. 1):

1) the endpoints of the line are projected on the DEM
and their approximate object coordinates are computed.
To this aim, based on the pixel-to-image coordinate
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transformation, and correcting for lens distortion and
atmospheric refraction if required, the pixel coordinates
are converted to image coordinates and the intersection
of the projecting ray with the DEM closest to the
projection centre is computed on the way down.
Likewise, when projecting over a and b, occlusions are
accounted for.

2) Since the DEM is only approximate, based on an
estimate DZ of its uncertainty, the points over the
image rays from the endpoints of i are defined. All four
points are then projected over the image b, defining a
quadrilateral including the endpoints of the segment i in
image b; the same procedure is applied to image c.
Provided that the uncertainty of the DEM has been
properly set and that occluding object parts are
represented in DEM, both quadrilaterals will certainly
include the true endpoints of i. Indeed the two opposite
sides of the quadrilateral lie along the epipolar lines
from the endpoints of i and account for the uncertainty
of the DEM (that of the exterior orientation is not
explicitly taken into account but it may be assumed
negligible compare to the uncertainty of the DEM).
Besides, if the line i exist in image a and b, his slope in
the image system must be in the range defined by the

angle formed by joining the opposite corners of the
quadrilateral.
3) All lines j and k in image a and b respectively, which
cross or originate from the quadrilateral are checked
against two conditions, in order to be considered as
candidates likely to match with i:
e their slope must be in the above defined range;
e the gradient orientation is in the same direction of
the projected vector.
4) Once the two lists are completed, they are searched
for terns of candidates: line i is coupled with all j's and
each pair ij with all k's in ¢: this builds up the
preliminary list of terns with respect to a.
5) After the procedure runs over all three images, we
end with 3 ordered list of terns. The lists are then
searched for to find all terns which are common to all
three lists. This should at least partially get rid of
“false” proximities between lines due to the effect of
the perspective: if the images are taken with different
angles, at least in one image the true spatial separation
should become apparent and, if larger than the window
search, exclude the wrong coupling.

Figure 1 — Definition of the search area on image b

3.2 Grouping terns in the preliminary list.

The next stage of the procedure establishes groups of
terns, by extracting from the above three lists sets of
segments which are not connected with each other: a
group will therefore include all terns of the three
images which share one or more line with other terms
and therefore are likely to match with more than one
segment.

The number of groups depends on the object
characteristics: if the edges in the object are not evenly
distributed (e.g. there are clusters of edges far apart
from each other, or at least well separated), then each
group will refer to a sub-structure of the object and will
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be made of a relatively small number of terns. On the
contrary case, when edges can be found everywhere on
the whole object, it may happen that a single group will
include all terns (representing the union of the search
windows of each tern element).

By construction, each group contains ambiguities to be
solved, but the search for matches, if any, can be
restricted to group elements.

As a first step towards this goal, we try to bridge over
small gaps between strictly collinear segments, under
the assumption that they were possibly caused by noise
or other disturbances which prevented the feature
extraction stage to recover them as a single entity (one
and the same edge). The obvious danger in this



operation is that arbitrary and wrong connections may
arise, especially working on a single image. We
therefore perform it only at this stage (after false
connections due to perspective have been possibly
eliminated), checking that the prolongation of one edge
in an image gets support from the existence of a long
edge in the other. This should robustify the operation,
allowing at the same time to fix slightly large
thresholds for the offset and the orientation difference
between two segments to be joined.

We are now in a better position to discriminate false or
impossible matching within the group: for each tern, a
line i is selected. The overlap, computed by intersecting
this line with the epipolar from the endpoints of j and k
(see Fig. 2) , must be larger than a specified thereshold,
on the assumption that true matchings must show some
significant overlap between the corresponding lines,
otherwise the tern is rejected.
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Figure 2 — Overlap between lines in a tern
3.3 Final selection of the terns

At this stage of the work, groups are divided into sub-
groups. To understand how this is done and why, think
of the case shown in Fig. 3: assume (a), (b) and (c)
represent a group and that 12-112-445 and 260-631-76
represent two correct matches. If we would accept only
one tern within a group, we will wrongly discard that
with the smaller score, based on the final consistency
criterium. Therefore we create sub-groups. Note that
we must avoid that splitting the group may allow the
possibility that two terns may be accepted, sharing one
line: this would happen e.g. if in (b) only line 631 is
contained. In such cases, only one tern must be
accepted, if any.
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Figure 3 - Splitting a group in subgroups

For each sub-group we find whether there is a tern of
lines consistent with each other. To this aim, a
reference image is selected and the intersections of i
with the epipolars from the endpoints of j and k are
computed. The midpoints of the two closest
intersections is taken as check-point. Its nominal
homologous in the other images are computed by
inersecting j and k with the epipolar line from the

check-point. For each tern of the subgroup we have
therefore three pairs of image coordinates and we can
check their consistency by the ls. adjustment of the
collinearity equations, getting also the 3D coordinates
of the point. The consistency is measured by the
estimates for o of the adjustment: based on image
resolution and the error location of the edge, we can
establish a threshold and reject all terns exceeding that
value. Among the terns which are acceptable at the
given the accuracy level, we pick the best as the most
likely correct. Therefore each subgroup may end either
with only one tern or without any tern.

4. EXTRACTION OF 3D SEGMENTS

Once the triplets of segments have been recognized,
they should determine a line segment in 3D. To this
aim, since in general the endpoints of the segments will
not be homologous, the intersection of the overlaps of j
and k an i are computed and back projected on a and b.
The object coordinates of the endpoints can now be
computed, again by space intersection.

5. APPLICATIONS

The mtohd has been first applied to simulated test
cases, skipping the feature extraction stage and
providing directly different sets of line segments in the
images. No specific testing was performed on the
influence of the approximation of the DEM; object
shapes were relatively simple, without occlusions in the
images.

Later the algorithm has been tested using the images of
the facade of a building in the Politecnico of Milan.
The images were acquired with a Rollei 6006 with a 40
mm lens. The image scale of the three images used
varies from about 1:200 to 1:400; digitization was
performed on a DTP scanner at 25 pm resolution.
Figure 4 shows the results of the feature extraction with
different number of partitions, gradient operators and
with or without displaying the segments less than 5
pixel long: it can be seen that there is much
fragmentation and that some line do not appear to
approximate the actual edge.

The DEM was simply taken by computing a plane
through the control points on the facade used to orient
the images. The uncertainty was assumed to be 25 cm.
Fig. 5 depict the result of the projection of the lines
from the reference image to one of the slaves: the
approximation is good for those on the facade, while
those inside the window are obviously misplaced.
Finally, Fig. 6 shows the 3D lines succesfully matched.

6. CONCLUSIONS AND PERSPECTIVES

The results shown above are clearly not very
satisfactory (but they are the first obtained on a real
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c) Sobel operator, 12 partitions, with noise d) Sobel operator, 12 partitions

Figure 4 - Feature extraction with different gradient operators and number of partitions
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case) demonstrating that extensive testing and perhaps
changes in the approach are necessary. Some error in
the code may not be ruled out yet, since the position of
some edges is clearly wrong. As it is often the case,
much blame at the first sight may be attributed to the
feature extraction stage. Two points in particular need
more investigations: the straight line interpolation of
the support region and the choice of the partitions that
may lead to excessive fragmentation of the edges. Still
to be verified is the influence of the DEM
approximations (but note that small occlusions were
successfully handled).
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Figure 5 — The projection from the reference to the
slave image
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Figure 6 — The 3D lines matched



