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ABSTRACT:

The possible presence of outliers in observations requires a refined statistical analysis for the traditional, as well as for
GPS networks. After a least square adjustment is performed, traditional methods essentially consist in a standardised
residual analysis. The so-called “preliminary diagnostic procedures” allow the identification of outliers and their
removal. The “Baarda data snooping”, the “t-test” and the “Danish method” are well known statistical methods
commonly applied in Geodesy. In the last few years a class of alternative estimation strategies has been proposed,
known as robust methods (Huber, Hampel, Rousseeuw). A major advantage in the use of such methods is that the
parameters obtained are only slightly influenced by outliers in the observations. Two different applications of robust
estimation are discussed in the paper; their application to a simulated GPS network and to a real GPS net for

deformation control is then presented.

1. INTRODUCTION

One of the most simple and widely used methods for
the checking of small movements of soil and buildings
is based on repeated observations, at different epochs,
their subsequent treatment (numerical and statistical),
and finally the comparison of the results of the various
epochs. :

The movements observed are often very small (e. g in

a landslide) and of the same order of the measurement

€erTorS.

In such a situation it is important to carry out a

sophisticated statistical analysis, because possible gross

errors in the model (mathematical and/or stochastic)
can be considered as movements, leading to an
incorrect interpretation of the phenomenon.

Historically the most used estimation criterion is the

Least Squares (introduced by Gauss in the XIX),

essentially because:

e the L.S. solution is easily calculated, as it is reduced
to a problem of minimum constraint;

e it takes on a precise geometric interpretation: it
minimises the Euclidean distance between the
measurement vector and the vector of the estimated
values;

e if the hypotheses model (e. g. the observations are
normally distributed) correspond to the sample
data, then the estimator is correct, efficient,
sufficient and consistent. It is also the maximum
likelihood estimator (i.e. it is the one with the
lowest variance among the correct estimators).

However, if the observations, or part of them, do not

follow the hypothesised model, for instance due to the

presence of gross errors, then the reliability of this
estimator rapidly decreases.
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So, in terms of efficiency, the maximum likelihood
estimators (obtained in the normal distribution case)
can lead to large inefficiencies even in presence of
small contaminations.

Those observations not following the assumptions of
the model are indicated as outliers.

To analyse the effects these gross errors have on the
classic estimate, one can take into consideration the
simple linear regression model: in fact, as this model
allows the functional relationship between just 2
variables, the data can be visualised on a 2D-scatter
plot.

This is generally not possible in geodetic surveying
problems, which normally involve multi-dimensional
variables.

It is usually possible to highlight different situations
where gross errors take on different positions in
reference to the other data (Fig. 1.1):

2. OUTLIERS AND ROBUST ESTIMATION
METHODS

In the presence of outliers, two possible solution

strategies can be carried out:

e the first involves the application of a series of

preventive diagnostic procedures aimed at
identifying the outliers, after which these
observations are removed, and finally, a traditional
estimate is carried out.
Two examples of preventive diagnostic procedures
are the Baarda Data Snooping and the Pope’s <
test, which are included in the statistical test
category;

e The second strategy involves the application of
robust estimate procedures, where the outliers
are identified after the parameters have been



estimated, and they are those having the greatest
standardised residuals.
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Fig. 1.1 Examples of gross errors in the data.

Therefore, diagnostic procedures and robust procedures
really have the same goals, but have an opposite
approach: when using diagnostic procedures, one first
tries to delete the outliers and then to fit the “good”
data by least squares, whereas a robust analysis first
wants to fit a regression to the majority of the data and
then to discover the outliers as those points which
possess large residuals from that robust solution.

In this way, in addition to the classical properties of the
estimators, robustness is introduced and used here as
defined by the main authors of these:

“In a broad informal sense, robust statistics is a body
of knowledge, partly formalised into “theories of
robustness”, relating to deviations from idealised
assumptions in statistics” (Huber, 1977).

“Robust statistics, as a collection of related theories, is
the statistics of approximate parametric models”

(Hampel, 1986).

So, in short, robustness means the ability to estimate
non-distorted parameters even in the presence of any
outliers.

The main aims of robust statistics are:

® to describe the structure best fitting the bulk of the
data;

® to identify deviating data points (outliers) or
deviating structures for further treatment, if desired.
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Fig. 2.1 The aim of robust statistics

3. HUBER’S MINIMAX APPROACH

The first approach to modern robustness theory was
lead by P. Huber, in his 1964 paper. He introduced the
gross-error model: instead of considering a precise
distribution model F, (which in general was the normal
distribution in classical estimation), he fixed a kind of
“neighbourhood” P. of the of model distribution F, and
guaranteed  optimal performance in that
neighbourhood. It is defined by:

F(x-0)=(1-¢)-Fy(x-6)+¢&-H(x-0)
F=(0-&) - ®+¢-H
P,(F,) ={F,:F,=(1-&)F, +&H }

The next step was the search for the least favourable
distribution f- in this neighbourhood, defined as the
distribution by which the asymptotic variance V(T,F)
of an estimator takes the highest value of the minimum:

Ly {\/—r;[T,, - T(F)} — N[0, V(T,F)]

v;(¢) = sup V(T,F) max asymptotic variance
FeP,

J+ 1v;(€) =min

After this, the estimator is chosen, which is the
maximum likelihood estimator for the f. function.
Therefore, by this approach, if the observations came
from f*, then that estimator is the most efficient. If,
however, they come from another distribution € P,
then the asymptotic variance is less.

Huber’s approach is called “minimax” because it
minimises the maximum loss of adherence to the
assumed model.

4. HAMPEL’S APPROACH OF ROBUSTNESS :
THE INFLUENCE FUNCTION (1968,1974)

Hampel’s contribution to the robustness theory can be
summarised in three fundamental concepts: the
qualitative robustness, the influence function and the
breakdown point.

® an estimator is qualitatively robust if, having
taken two distributions F and G “near” each other,
then the distributions of T, under F and G
respectively remain near each other. Qualitative
robustness therefore expresses the equicontinuity of
the distributions of T, with respect to n:



Ve>036>0,ny>0:
VG, Vnzny,d«(F,G)< &

=sdL.@)Ls )<

e the influence function measures the effect, on the
estimate, of an infinitesimal contamination of the F
distribution at the point x, standardised by the
mass of the contamination. Thus, it describes the
asymptotic bias caused by contamination in the
observations.

IF(x,T,F)=lim

t—>0

T[(A-DF +tA]-T(F)
t

® the breakdown point expresses the greatest
percentage of gross errors that can be tolerated in
the sample by the estimator before that sample turns
out to be not informative.

F(x-0)=(1-£)-G(x-0)+&-H(x-6)

The influence function describes three properties of
the local robustness of an estimator:

® the gross error sensitivity y, which measures the
maximum bias that an infinitesimal contamination
can cause to the estimated value of an estimator. If
v is finite, the estimator is called “B-robust”;

® the local shift sensibility A, which measures the
estimator stability when replacing x by y, with x
and y near each other;

® the rejection point p, which represents the shortest
distance from the location parameter outside of
which the observations do not contribute to the
estimate value.~

Therefore an estimator must:

® possess a y value which is still quite low;

® be much more efficient than the median;

® possess a low local shift sensibility A;

® possess a finite rejection point p.

S. CLASSES OF ESTIMATORS

The classification of robust estimators is very wide,
and frequently an estimator can belong to more than
one class because it can be obtained in different ways.
The most common classes of estimators are:

ML, A P,Sand W.

Among the various estimators analysed, only those
used in the applications are given.
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6. M ESTIMATORS (MAXIMUM LIKELIHOOD
ESTIMATORS)

The M estimates derive from “generalised maximum

likelihood”; in fact, these estimates come from a
generalisation of the Maximum Likelihood Principle:

z . 2 £'(T,;x;)
-Inf(T;x) =min or > —2"2 =
g 1§1 f(Tn;xi)

In practice an M estimator is defined by a minimization
problem of the form (p is the objective function):

_}j:lp(x ;T,)=min  or

n ' 2 -;Tn
2y T)=0 fy(xT,)= %
i=1

n

but where the p function does not necessarily coincide
with the logarithm of the density function f.

These two expressions supply the definition of the M
estimator, and the nature of the p and ¥ functions
determines the estimator properties.

The M estimates are more robust than the minimum
norm (L) and are also robust against outliers in y
direction.

However, their breakdown point is = I/n, because the
estimates are affected by outliers in the x direction. To
solve this problem, redescending ¥ functions were
introduced, so that they are annulled outside a certain
interval.

Besides, as the M estimate cannot usually be explicitly
calculated, in practice iterative calculus procedures are
used, for example W estimate.

In the following applications, W estimators with
redescending ¥ functions are mostly used. All of the
estimators used in the present work are implemented in
a Mathcad programme.

The design structure diagram and the Mathcad
algorithm are shown in Fig. 6.2, both for W estimators
and Siegel’s repeated median estimator.

Standardized residual
— Rousseeuw =- Danish Method (c=3)
- Tanh — Hampel

=+ Danish Method (c=2)
Fig. 6.1 Reweighted function
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Fig. 6.3 Siegel Estimators (Mathcad algorithm)
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7. NETWORK LEVELLING FOR A DAM

Robust theories were first applied to data obtained
from the testing of a dam by means of spirit-levelling
network.

In this case, we are interested in the heights of a
levelling network points on a dam at 36 epochs

Of the various points analysed, the results of point N°
519, which was situated on the crowning of the dam,
are shown.

At the beginning, two different situations were
considered: the set of observations were contaminated
respectively by two “large” gross errors (about 5c) and
2 “small” gross errors (about 2 ).

Hypothesising a linear trend for the observations, there
are two parameters to be estimated: the slope and the
intercept of the regression straight line.

It was determined:

® an estimate according to classic criterion (L.S.);

® a robust estimate according to Siegel’s repeated
median estimator (sketched line)

él = medmed 22~ R éz = med(y,— —él -xi)
i XX i
® the LS estimate excluding the first two

observations, i.e. the contaminated ones (sketched
line)

107.7

108.4
Epochs .
°°¢ Observed values PO . Robust regression (Siegel)
— L. S regression -~ L.S. regression without gross errors

Fig. 7.1 Contamination with 2 “large” gross errors
(~50)

107.7

108.4

Epochs
oo Observedvalues  — Robust Regression (Siegel)
— L.S. regression -+ L. S regression without gross errors

Fig. 7.2 Contamination with 2 “small” gross errors
(~20)



From the results it can be seen that:

In both cases the L.S. solution is highly affected by
the presence of the two outliers, which tend to
“attract” the regression straight line.

On the other hand in both cases the robust solution
almost coincides with the L.S. solution without
contamination. This underlines the great efficiency
of this estimator.

After this, two diagnostic indicators (Baarda’s and
Pope’s) were applied to both the above situations to
detect any gross errors.

Once the L.S. model was fixed, we tested the H, null
hypothesis “The model is correct both in the functional
and in the stochastic part” versus the H, alternative
hypothesis: “Only one outlier is present”.

For Baarda’s test, once a oy =20% for the single
residue was fixed, and a B,=20%, the threshold value
was obtained, to be compared with the values of the
standardised residuals of the observations.

In Pope’s test, the threshold was obtained on the basis
of the redundancy and after choosing an o of 5%.

x X

&

X x* xX
0 5 10 15
xxx Standardized residuals
— Pope's threshold
__ Baarda’s threshold

x \ X

i

20

X
X
X X

| XX
25

X
35

|y
30
epoches

0

Fig. 7.3 Baarda and Pope's test

From the results obtained, it can be seen how in the
first situation both tests are successful because they are
able to pick out the two gross errors. However, in the
second situation the tests fail.

Baarda's test (Baarda data snooping):

ay,=20% — u, =3.5 (thresholdvalue)
By =20% a=20%
u; = LI S (standardized residuals)
SV,- So ‘\/ qviv,-
Pope's test (z's method):
a=5%—a,=0.1%
° 0 = Tpo /2 =2.98 (threshold value)
r=34 e
V.
u; = ——=—"—— (standardized residuals)
SV,‘ SO : “' qfiv‘
4 | T | |
X
* -
Xy X
X XX X " X
" X X xx X x . Xxx
[T ST IVIR SN T T
0 5 10 15 20 25 30 35
X Standardized residuals epopchs
_ Pope's threshold
__ Baarda's threshold
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This leads to the following observations:

® In Baarda’s test an excessively high o value had to
be assumed to highlight the errors inserted;
® The results of both tests depend on the number and
entity of the gross errors;
® On the contrary, the robust estimate is reliable in
both situations.
Given that the two tests cannot pick out the gross errors
when they are quite small, this situation was analysed.
However, this time we inserted four small gross errors
(~20).
A series of four robust estimators were applied to the
sample data:
® the repeated median estimator (Siegel);
® Rousseeuw estimator;
e the Danish method;
e the weighted least squares solution;
The results are shown in the figure below and
compared with the L.S. estimate without the four
EIOSS eITOrS.
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Fig. 7.4 Results of the adjustment

It can be seen from Fig.7.4 how all the robust straight
lines are quite “concentrated” around the L.S. estimate
in the absence of the four gross errors, and this is a
proof of the reliability of robust estimates.

8. THE GPS MONITORING NETWORK FOR
THE ASSISI LANDSLIDE

The robust estimate methods were next applied to a
GPS monitoring network for the Assisi landslide.

The network is made up of six reference vertices
placed in geologically stable areas, and fourteen
control vertices.

The processing was done first on a series of four
different GPS network simulations, and then on the
reference point network of the Assisi landslide.

B,
R - ’36

[] Landslide area

s5
Fig. 8.1 The Assisi network

8.1 SIMULATIONS

The four different simulations differ from each other in
the network geometry and the number of constraints,
and therefore the redundancy.
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Fig. 8.1.1 The 4 simulations

In particular, the measurement vector was constructed

by adding a random component with a mean of zero

and a standard deviation of 5 mm to the “real”

measurement vector.

The variance-covariance matrix was formed, imposing

a 25 mm’ variance and a covariance of 2.5 mm?.

After a single base solution was carried out, four

different situations were examined:

e a gross error of 20 cm in the 1* component of
baseline 1-2;

e a gross error of 20 cm in the 2* component of
baseline 1-2;



® a gross error of 20 cm in the 3% component of
baseline 1-2;

e a gross error of 20 cm in the norm of baselinel-2.

The following estimates were carried out:

LS without gross errors;

LS;

Robust (Roussecuw);

robust (hyperbolic tangent);

robust (Danish method);

robust (Hampel).

From the results it was observed that:

® the LS solution was strongly influenced by gross
errors, since it moves from the “real” parameter
values;

® on the other hand, the robust solutions reduce their
differences from these “real” values;

® Rousseeuw’s estimator had the advantage of
trending to “real” values (while the other robust
estimators trend to the LS estimates without errors).
However its convergence speed is not optimal;

¢ the Danish method presents the greatest
convergence speed (5-6 iterations are sufficient);

e finally, the regulation constants of the various

reweighing functions are function of the network
redundancy.

8.2 THE ASSISI GPS REFERENCE NETWORK

Lastly, we analysed the monitoring network for the
Assisi landslide.

Considering a minimum constraint datum (vertex 1
fixed and without errors) and a single base solution, a
L.S. estimate was carried out, which was later
subjected to a global test, to verify if the sample unit of
weight variance came within its theoretic distribution.
WGS-84 coordinates of vertex 1

| 4554649.117)
X =k 1021931.667)

4333034576
Ajiran1 Ajran2 Ajirans Airans
-173.958 1024.473 |504.091 519.823
1527.801 |307.687 -243.202 -2447.035
361.966 -1531.401 |-550.101 -734.189
-784.27 -280.18 -105.652 1130.137
-521.157 -764.356 705.766 -398.08
1014.236 |464.133 -144.937 -1386.448
-106.212 345.856 -678.615 626.036
-2292.156 |-919.239 -1226.921 |-154.879
102.172 -372.232 1159.172 -836.361
-398.439 -610.314 504.65
-462.566 -2048.961 |2754.719
695.037 652.26 -797.21

Tab. 8.2.1 Baseline measured
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N I R
r=30| = AraT%
Global test :
AT ~ 2
.P.
T=v%2"=r—52&=45.70
Oo =)

The test rejected the model. Therefore robust estimates
were carried out according to the four estimators
previously introduced (Rousseeuw, hyperbolic tangent,
Danish method, Hampel).

The four estimates were subjected to a global test, and
the tests accepted all the robust models.

Rousseeuw | Tanh | Danish Method | Hampel
x| w71 |37 43.77 43.77
T 13.94 12.02 2141 29.82

For vertexes 2 and 6 in particular, the L.S. estimate
moved away from the robust estimate. As this trend
had been seen in previous controls, it leads to the
validity of robust estimates.

In the figure below the adjusted coordinates of vertex 6
with the hyperbolic tangent estimator and with L.S. are
shown.

X component of Vertex 6

4554038.815

(m) -

4554038.805

1019882.715

@ |

10199882.705

Z component of Vertex 6
4333686.85

()

4333686.84

Fig. 8.2.1 Adjusted coordinates of vertex 6 with the
hyperbolic tangent estimator and with L.S..




It can be noticed how the maximum movement
between the two estimates is = 5 mm, which is quite
significant considering that the average movement
observed is about 1 cm per year.

Vertex | Tanh-L.S. (mm)
Xs 448
Ys 0.90
Zs 5.23

Finally, on the histogram below a comparison between
the results of the four estimators is given.

| ' i BN Y500

)
-
[

6.0

V400

3.00

Tanh 7 17200
Rousseuw
Danish Method _g;

Hampe!

171.00

A v 0.00
X2 Y2 Z2 X3 Y3 Z3 X4 Y4 Z4 X5 Y5 Z5 X6 Y6 Z6

ww

Fig. 8.2.2 Differences in absolute value between the 4
robust estimate and the L.S. estimate.

9. CONCLUSIONS

Although research is still in progress, it is nonetheless
possible to draw some conclusions; fortunately we can
say that robust estimates offer several advantages over
the L. S. estimates:

® in the presence of gross errors they limit the
estimate distortion;

® in the absence of contamination of the data the
efficiency losses are also limited.

On the other hand some problems remain:

® apart for “Baarda data snooping” and Pope’s t test,
which however come into the category of
diagnostic indicators, few examples of robust
procedures applied to geodetic problems exist.

® As the theory of robustness is relatively new, we
haven not yet acquired the knowledge that would
enable evaluation of the best estimators for the
various different situations;

¢ Finally ,the computational calculation remains
difficult.
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