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ABSTRACT

When parameters of a coordinate transformation are estimated by means of some double points, the simplifying hy-
pothesis of considering the randomness of only one kind of coordinates is often used. This choice produces an error that
is negligible in certain cases, but not always. Because of this problem is not always well treated in textbooks, a detailed
exposition is given, first of all; then it is described a simulation that has been conducted to point out when the simplified

method is admissible.

1. INTRODUCTION

Let's consider for instance a parameter estimation prob-
lem for a conformal coordinate transformation
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by means of some double points. This could be, but not
necessarily, a typical interior orientation problem where
(UV) are the instrumental coordinates of the fiducial
marks, measured on each image, and (XY) are the image
coordinates of the same points read on the calibration
certificate, but measured once and for all by the camera
manufacturer. We could also consider, equivalently, an-
other well known planar coordinate transformations such
as the similarity transformation
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In a rigorous LS approach both (XY) and (UV) should be
considered random variables (rv from now): under this
perspective the relationship (1) is only strictly true for
coordinate mean values. Nevertheless, it often happens
that (XY) are treated as constants; this is not too far from
truth if (XY) are a little widespread with respect to (UV);
this is wrong instead if their spread is comparable or even
bigger than the (UV) one. As a consequence, we could
expect that in the former case a small, negligible error is
introduced in the results, while, in the latter case, results
are afflicted by a consistent error.

In practice the approximated approach is applied almost
always. This paper's aim is to clearly explain how the pa-
rameters of a conformal coordinate transformation are
estimated by LS, mostly detailing on the deterministic
model structure, since this is difficult to find even in text-
books. Besides, it will be described an empirical investi-
gation, based on simulations, that has been conducted to
outline the admissibility limits of the approximated way
of solving adjustments.

2. THEORETICAL BACKGROUND

The paper will take into account only the parametric
model of LS. We'll consider an m-dimensional rv Y and
an n-dimensional rv X (m = n) whose mean values are
related in the following way

Y=AX+a Q)



where A is m x n matrix and a is an m vector; they must
be constant, that is, they can't have a stochastic nature.
The goal is to give an estimation of the mean values of X

and Y (that will be called X and \A(), provided an ex-
traction Y, (a measurement) of the Y rv is known, so that

e the estimations X and Y satisfy the (2) condition:
Y=AX+a

e the observable mean value estimation is as close as
possible to the observations Y, , in the LS sense.

In practice we will try to satisfy, though not exactly, the
observation equations

Y,=AX+a 3)

in the best possible way, and this means, in the LS ap-

proach, to choose Xas the solution of the following
minimum problem

min(Y, ~ AX -2)'Q7'(Y, - AX -a) ©)]

where Q is the structure of the variance-covariance ma-
trix of the Yrv. The word structure recalls that, writing

the variance-covariance matrix in the form C,, =03Q,
the matrix Q has to be known beforehand, while the co-

efficient o, will be estimated by LS solution. Under all
these conditions, the solution is well known

X =(A'QA)"A'Q7(Y,-a) )

Moreover, it is also possible to calculate the estimated
mean value of Y, the observations rv

A

Y=AX+a

the overall quality parameter
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and the variance-covariance matrixes for both estimated
parameters and observations, respectively

Cy = ag(A‘QA)"‘
C,, = AC L A’

If the relationship between the mean values of the meas-
ured quantities and the unknowns is not linear

Y =1£(X) (6)

the solution is reached iteratively by a sequence of linear
approximated problems; indeed if X' is an approximation
of X, the (6) relation can be Taylor-linearized

Y 23(6),. (X - X)+£(X)

So the approximated observation equations, analogous to
the (3), have the form

Y, =J(f) . (X-X")+£(X")

The Jacobian matrix J(f )x. is obtained differentiating all

the components of the f function with respect to all the
components of the unknowns vector X . The Jacobian
matrix J(f),. plays the role of the matrix A and, being
evaluated on a fixed point, it is a constant, from a sto-
chastic point a view. The quantity f(X") plays the role of

the a vector and, again, it is a constant, being the value of
a function on a fixed point.

After the first solution has been calculated, it is used as
the approximated one for the next iteration and so on. The
procedure is stopped when the solution is stable, that is,
when further iterations give no meaningful gain. It is im-
portant to underline that, while solution (5) is rigorously
valid (every LS problem of the type (2) has a unique so-
lution of that kind), the iterative solution for not-linear
problems (6) is not guaranteed: depending on the form of
the f function and also on the starting solution X', it
could also happen that the iterations give wrong results or
no results.
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3. RIGOROUS AND APPROXIMATED AP-
PROACH FOR THE CONFORMAL TRANSFOR-
MATION

Let's start considering the rigorous approach: we'll think
to have N double points. For each of them, there are four

observables (u,v,x,y) so that the LS adjustment has 4N
observations. The unknown set is made of the parameters
T,,T,,a, A together with the x,y coordinates of each
point, so there are 4+2N unknowns

X=(]},Tz,a,/‘i,xl,yl,---:me’N)'

The deterministic model function f will have 4N compo-
nents: in particular those related with the i-th point have
the form

u AMF, cosa—y,sin@)+T,
— |V — | Ax;sina@+7,cos@)+1T,
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X; X,
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The third and forth relations only apparently are strange:
they simply mean that, among the quantities that are to be
estimated, some are directly measured; in any case these
quantities are estimated not only on the base of their di-
rect measurements, because they are also involved in the
other two equations, so also # and v measurements con-
tribute to x and y estimation. It could be useful and ex-
planatory to consider also the observation equations,
analogous to the (3)

Uy, A%, cos & — ,sin&)+1T,
Voi | _ A%, sina + p, cos @)+ T,
Xoi x;
Yoi Vi

so that it is clear that the X, and p, values we are look-

ing for are those that fit in the best way with both
X,, Y, and u,,v, measurements.
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The f function considered in (7) is not linear, so it is nec-
essary to follow the approximated iterative way; therefore
it is necessary to evaluate the Jacobian of f evaluated on
an arbitrary fixed point X . Remembering the rule
5 2

aX;
related to the i-th point.

, (9) shows that part of the Jacobian which is

0(1,2(i—1)) indicates, as an example, the matrix made of
zeros, with 1 row and 2(i—1) columns. The so obtained
Jacobian perfectly fits the requirements for LS adjust-
ments because there isn't any randomness; it must be
noted that this approach doesn't mean to give the same
weight to all the observations, because the Q matrix al-
lows u,v and x,y measurements to have different weights.

Let's now consider the approximated approach. Let's
suppose, as an example, that the double points are the fi-
ducial marks of an aerial image and that the (XY) coordi-
nates are given by the camera's constructor, so that they
are very precise; let's suppose again that (UV) coordi-
nates have been measured on a 300 dpi image. The (XY)
coordinates are much more precise than the (UV) ones, so
we could regard the former as constants, even if they
aren't, strictly speaking; in this case there are only two

measured quantities (u,v) for each point so that the LS
adjustment has 2N observations. The unknown set is only
made of the parameters 7;,T,,a, A, so there are 4 un-
knowns

X=(T,,T,aA)

This way of proceeding has consistent computational ad-
vantages: equation number is halved and the unknown
number is fixed to four, while it increases with point
number in the rigorous approach. In the approximated
approach, relations (7) take the form, for the i-th point

MX cos@—y,sin@)+T,

N

= (%)= ®

ME,sin@+y,cos@)+T,

s

and the Jacobian of the f function is obtained differenti-
ating only with respect to 7,, T,, &, A, so it has the form

indicated in (10).
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It is noticeable in (10) that starred quantities are fixed ar-
bitrarily, that is, stochastically constant, while x,;,y,; are

measurements (regarded as constants, of coarse), that is
stochastic quantities. Therefore the matrix J contains a
certain quantity of randomness and this violates one im-
portant validity condition of the LS theory: only if ran-
domness is small compared to that contained in u, v, we
could expect that the approximated approach gives good
results (containing a small negligible error), though non
strictly correct. This is a necessary condition for the sim-
plified approach, that should be checked every time be-
fore applying it.

4. THE INTERPOLATING LINE: THEORETICAL
SCHEME AND EMPIRICAL INVESTIGATIONS

The conceptual scheme of approximated and rigorous
solutions for LS adjustments has been exposed; we have
chosen to illustrate it with an example based on confor-
mal coordinate transformations because this is a very well
known subject. Next question is to practically investigate
the size of the error introduced by the approximated ap-
proach and, mostly, to find the conditions under which
this error is negligible or not.

We have decided to work out the empirical part of the
investigation on the interpolating line problem rather than
on the conformal coordinate transformation: the former is
certainly the simplest LS problem, but this hasn,t been
the reason of the choice. Actually, for planar coordinates
transformations both rigorous and approximated prob-
lems are in general not-linear, so their LS solution is an
approximated one, reached iteratively; on the contrary,
the simplified approach of the interpolating line is linear,
as it will be next shown, so it has an exact LS solution: if
such a solution has an error, this can be undoubtedly as-
cribed to the only existing source of error: the hypothesis
on which the approximation is based.

- * - - . - -
A(x,cosa —y,sina) X sina + Yy, cosa

Let's suppose to have a linear phenomenon, for instance a
thermal dilatation, described by the well known law

y=px+gq

If we know the law of the phenomenon, that is p and g,
we can predict the value assumed by y at any x. If instead
we don't know p and g, but we are able to measure some
couple of values (x;,y,;), we can give an LS estimation
of p and g. Let's examine first of all the rigorous ap-
proach, which treats both x,, and y, as measures, that

is extractions from a rv. For each point, there are two ob-
servable v, x,,y; so there are 2N observables if N is the
point's number. The unknown set is constituted by p, g,
X,,-**,Xy , S0 the unknown vector X has 2+N elements
structured in the following way:

X=(p,q,x1,...,xN)'

The deterministic model has the form (once again we'll
give explicitly only the components related to the i-th
point)

while the observation equations are
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The model is of coarse not linear, so it is mandatory to
use the iterative way, and, in order to carry out it, it is
necessary to calculate the f Jacobian matrix on an arbi-

trary value X’

7o x, 1 0@1i-1) p OIN-1)
“lo 0 owi-1) 1 OLN-I)

In the approximated way of proceeding, we regard the
measured x,, values as constants. There is one only ob-

servable for each point, namely y;,, so there are N obser-
vations. The unknown set is only constituted of p and g;

the unknown vector is X =(p,q)" .

The deterministic model has the form
Y= Vi =f(§)= px,+q |=| %, 1 (—-J

that assumes the general form (2), giving the A matrix the
expression

and thinking that a is in this case the N-dim null vector.
The observation equations are

In this case it is possible to apply directly LS techniques,
of coarse insofar as x,,...,x,y can be treated as con-
stants.

5. THE SIMULATION

To quantify the error introduced by the approximated ap-
proach, a simulation has been worked out with the fol-
lowing scheme.

e True values have been chosen: p=1, g=1000,
X =1000,...,2000 (10 equally spaced values).

e The true values x; and y, have been increased with
a normal noise characterised respectively by o, and
o, , to have the measured values x,, and y,, . Dif-

ferent values of o, and o, have been taken into ac-
count.

e LS estimation of p and g has been worked out both

with the rigorous method and with the approximated
one.

e The procedure has been repeated 400 times; results
have been recorded; at the end of the iterations, mean
values and rmse have been calculated.

e Differences between the true values and the esti-
mated ones have been analysed.

Results referring to three different simulations are shown
in the last page; they are related to the g estimations: p
estimations show the same behaviour. The left part of
each graph shows the behaviour of the approximated
method: the square shaped markers show the estimated
value of g (obtained averaging over all the repetitions) as
a function of o, and o ; the right part shows the results

obtained from the rigorous method: markers are in this
case diamond shaped. In each graph, the black line repre-
sents the true value for the estimated parameter; the error
bars corresponds to the 95% confidence interval.

In all the simulations the rigorous method shows the cor-
rect behaviour. Let's now examine the approximated
method's results. In the first simulation (Figure 1) o, and

o, have the same values and range from 50 to 5: in the

high value interval there is clearly a bias in the (approxi-
mated) estimations, which tends to vanish when the rela-
tive error become smaller. This could explain why in our
environment, in which relative errors are small in general,
people sometimes use the wrong procedure without hav-
ing too big consequences.
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The other two simulations want to underline that, in any
case, the necessary condition regards the ratio o, / oy : if
this is small, the simplified approach is acceptable. Let's
consider the values o, =o, =5 for which, according to
the previous results, there is no bias. Let's fix o, =5 and
let o, range from 5 to 50, so that the ratio o, /0o,
ranges from 1 to 10: the bias shows itself as soon as the
ratio o, / o, becomes greater than 1 and increases rap-

idly with o, (Figure 2).

Let's consider the opposite situation, that is
o, =0, =50, which shows a big bias, according to the

first simulation. Let's fix o, =50 and let o, range from
50 to 5: the bias decreases with o, and it vanishes when
the ratio o, / o, is lower than 1/2 (Figure 3).

6. CONCLUSIONS

We have tried to follow a didactic style, giving explicitly
the shape of the deterministic models of the various
problems taken into account. Simulations results could
also be effectively used for teaching LS adjustments and
to illustrate related problems. The aproximated/rigorous
approach behaviour can be briefly synthesised as follows.

e  The rigorous approach always gives good results.

e The simplified approach isn't always good, as the
theory tells: it is valid when the ratio o,/0o, is
small.

e It seems that when X and Y are equally widespread
and their relative dispersion is small, the bias van-
ishes. This requires some more research work.

o  Further analysis is necessary so to examine not only
unknown estimation, but also their variance-
covariance estimation.
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Figure 1: o, and o, take the same values, between 5 and 50
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Figure 2: o, ranges between 5 and 50; o, =5
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Figure 3: o, ranges between 5 and 50; o, =50
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