Recent Advances of Data Integration, Spatial Analysis and Modeling for Sustainable Development

Shunji Murai, Kiyoshi Honda and Krishna Jee Pahari
STAR Program
Asian Institute of Technology
P.O. Box 4 Klong Luang, Pathumthani 12120
Thailand
Fax: +66 2 5246147
E-mail: murai@ait.ac.th

Abstract

Remote sensing is entering the third generation when high technologies such as high resolution satellite data with one meter ground resolution, SAR (synthetic aperture radar) interferometry, integrated sensor system with GPS (global positioning system) and INS (inertia navigation system) and so on will be implemented in actual applications. On the other hand, GIS (geographic information system) has emerged with a variety of applications, some of which remote sensing can be integrated as a latest data source to be input to GIS.

Remote sensing data with multi-function are now available for data integration, spatial analysis and modeling for sustainable development. In this paper, the authors summarize their observations and vision about the subject in relation to their own researches or knowledges in a quarter century.

Introduction

“Sustainable development” has become a key word since “Earth Summit” with agenda 21 held in Rio de Janeiro 1992. “Space technology applications for environmentally sound and sustainable development” has become another key word in Asia and Pacific since so called “Beijing Declaration” at Ministerial Conference was adopted with more than 30 ministers or subministers in Asia and Pacific in Beijing, China in 1994 (UN ESCAP 1994).

This is why many national projects with a title of sustainable development are now running in connection with remote sensing and GIS.

It should be noted that Asian remote sensing scientists have exchanged their experience and knowledges about how to solve environmental problem with remote sensing through Asian Conferences on Remote Sensing to be held annually since 1980 (Murai, 1992). Nowadays not only high technologies of remote sensing but also GIS are to be applicable to our final goal of sustainable development.

The objective of this paper is to review recent advances of data integration, spatial analysis and modeling particularly in view of sustainable development in Asia and Pacific.

Integration and analysis of multi-function remote sensing data

At the beginning stage of remote sensing in 1970’s multi-spectral was a major concept of remote sensing. However, at present, we have many multi-function remote sensing data as follows.

- Multi-spectral/multi-frequency
- Multi-temporal
- Multi-resolution
- Multi-sensor
- Multi-source
- Multi-station
- Multi-polarization
- Multi-media
Data integration and analysis have been developed or proposed for these multi-function remote sensing data as follows (see Table 1).

a. Multi-spectral/Multi-frequency

One of the most exciting high technologies in remote sensing will be hyperspectral analysis with imaging spectrometer with 32–384 bands. It enables more precise classification of ocean colors, wetland vegetation, rock types etc. (Tong, 1997).

Multi-frequency of SAR data, for example L, C and X band, possibly in combination with multi-polarization of HH, HV and/or VV will provide users with more information about features of targets or objects on the surface or sub-surface (Shao et al. 1997).

Not only normal color composition but also principle component analysis or hyperspectral analysis are often used.

b. Multi-temporal

Multi-temporal data are of remarkably importance in change detection and trend analysis of dynamic features such as agricultural field, land use change, urban sprawl, disaster monitoring and so on. In addition to multi-temporal capability, more and more real time monitoring and identification of serious phenomenon such as oil spill or disasters should be paid attention. Change detection has been implemented by many researchers with for example, principle component analysis and spectral signature similarity analysis (Yasuoka et al, 1994).

Multi-temporal data are also useful to improve land cover classification particularly vegetation cover.

c. Multi-resolution

It would be a good idea to integrate high resolution data with narrow coverage, and lower resolution data with wider coverage, because of limitation of data amount. The idea is to simulate a wide area with high resolution data using a relation of spectral features between high and low resolution data. For example, NOAA AVHRR data with a wide coverage can provide more reliable vegetation classification by using a relation with high resolution TM data as ground truth (Lertlum, Murai and Honda. 1997).

Pan sharpened color image with integration of one-meter panchromatic and three meter multi-spectral satellite data is being proposed to obtain a “pseudo high resolution color image”.

d. Multi-sensor

Several sensors from different countries are now available. For example, American Landsat, French SPOT, Japanese JERS-1, Indian IRS, Canadian Radarsat, ESA ERS etc. are in operation with different sensors and resolution.

An idea is why not integrate different sensor data to supplement each other, for example to avoid cloud cover problems as well as to identify different features with different sensors.

Data fusion of optical and SAR data is a successful data integration. For example, SAR can monitor flood in rainy season even with dense cloud cover, while optical data will provide better land use classification (Honda et al, 1997). Vegetation index obtained from NOAA AVHRR can be overlaid onto Defense Meteorological Satellite data with night light and fires that identify urban and deforestation areas, respectively.

e. Multi-sources

Remote sensing data can be successfully integrated with other data obtained from other sources such as maps, statistics, GIS database etc. DEM (digital elevation model) can be simply overlaid onto geo-coded satellite imagery to produce 3D bird's eye view or animation of flight simulation.
Remote sensing data have been integrated with GIS data in many GIS applications and modeling (Murai, 1991). Remote sensing can also be combined with GPS data for field investigation or ground truth survey.

f. Multi-station

Introduction of concept of stereo vision has been well recognized in the history of aerial photogrammetry to obtain three-dimensional information such as contour lines, DEM or ortho-image. Stereo or even triplet models are now possible for very high satellite imagery with submeter ground resolution, which is equivalent to capability to produce 1:10,000 to 1:25,000 topographic maps with 5 to 10 meter contour interval (Sinclair, 1997).

SAR interferometry is also based on multi-station with a short base length in the requirement of interferometric condition (Tokunaga, 1997). SAR interferometry is now being proposed to generate global DEM at one second interval or about 30 meter grid on the land with Space Shuttle. SAR interferometry is also applicable to detect subtle deformation of ground height due to earth quake, volcanic eruption, glacier meeting, sedimentation or soil erosion, etc. It will be very useful for environmental problems in Asia and Pacific.

g. Multi-polarization

For combinations of two options, horizontal (H) or vertical (V) for transmission polarization by two options, H or V for reception polarization for SAR, that is HH, HV, VH and VV will provide different feature signals because SAR data depends on polarization in its return signals.

Integration of Multi-frequency (L, C, X band) and multi-polarization (HH, HV, VH, VV) will be a powerful SAR system for better land type classification (Shao et al., 1997).

h. Multi-media

Not only different types of media such as hard copies and soft copies (CCT, CD ROM, video types etc.) but also many types of visualization such as animation and virtual reality are now available. More attentions are being paid to create beautiful products called “virtual reality map” as proposed by the first author in consideration of human sensibility. (Tanaka, Ono and Murai, 1997).

Some examples of modeling for sustainable development:

a. Regression Model on Relation between Population Density and Forest Loss

Regression model is a typical and most popular model to correlate two variables. Pahari and Murai (1997) found a very good regression model to correlate population density and forest loss continent by continent, as shown in Figure 1. The forest loss is defined as forest loss between current forest cover and potential natural forest cover to be estimated only from temperature and rainfall on Martonne's model.

From this regression model, it would be possible to predict future forest loss due to population increase in 2025 and 2050 as shown in Table 2 (Pahari and Murai, 1997).

b. Global Soil Loss Prediction Model

Pahari and Murai (1997) modified the existing universal soil loss equation (USLE) for a global model to predict soil loss, that
enables the prediction of soil loss region by region with possible forest loss due to population increase as shown in Table 3 (Pahari and Murai, 1997).

c. Simulation Model for Prediction of Regreening at Deforestated Area due to Copper Mine

Honda, Murai and Shibasaki (1993) applied so called “Logical Curve” developed by Mischerlich (1919) to predict and simulate regreening process from the damaged area at Ashio Copper Mine in Japan. Many phenomena are anticipated to follow the logical curve as defined as follows with respect to time change.

\[Y(t) = a(1 - \exp(-kt)) \]

This logical curve shows a slow start at the beginning, rapid change in the middle stage and slowing down at the saturated stage as shown in Figure 2.

d. Simulation Model for Prediction of Human Carrying Capacity

Asakura et al (1991) developed a model to predict human carrying capacity in terms of how many population can be supported, with use of GVI (Global Vegetation Index) from NOAA AVHRR Data to predict potential agricultural productivity of nine major crops. In this study, it was predicted that 7.7 billion population can be supported if we will eat as we eat now in each country (see Table 4).

e. Prioritization Model for Forest Conservation

Shibasaki et al (1995) developed a GIS model with use of NOAA AVHRR data and other GIS data to prioritize the forest conservation at global level using overlay with weights as shown in Figure 3.

The model was in consideration of carbon storage conservation, erodability and ease of forest.

f. Simulation Model for flood due to Deforestation

Ochi and Murai (1989) developed a simulations model with use of DEM and vegetation index at the damaged area of land slide in Nakhon Sri Thammarat, in Thailand. The model was to predict the speed up of the peak time and the increase of run off of flood in case of deforestation by using the relation that run off ratio will increase if vegetation index decreases due to deforestation.

Figure 4(a) shows the three cases of flood simulation for dense, sparse and non-vegetation.

Figure 4(b) shows the analysis of landslide occurrence with respect to land covers; bare soil, sparse vegetation, rubber and tropical forest. It is clear that less vegetation will cause more landslide as well as flood.

g. Deforestation Speed Model

Sah, Honda and Murai (1997) have developed a model for establishing a relation between watershed land degradation over time and socio-economic status of people living over there in Trijuga Watershed, Nepal. Degradation was represented by soil loss from Universal Soil Loss Equation (USLE). In this study, three indices of DSI (degradation speed index), SI (sensitivity index), and SSI (socio-economic status index) were found to have strong relationship in a multiple regression model as follows.

\[DSI = 0.6 \ SI - 0.27 \ SSI + 3.92 \]

Where

DSI : a linear combination of forest change (%), rate of soil loss change (t/ha/yr) and contribution to soil loss change (%)
SI: soil loss increment (t/ha/yr)/forest loss (%)

SSI: sum of ratio of locational value divided by total value

This regression model was found very useful to integrate social-economic factor and physical factor such as soil loss in three different ecological zones of valley, mainland and hill in a severely affected area by soil erosion in Nepal as shown in Table 5.

h. Visualization for Digital Terrain Model

Tanaka, Ono and Murai (1997) have developed various visualization models to represent digital terrain model (DTM) in consideration of human sensibility. These models are called “virtual reality map” by the first author, because several virtual reality conditions are added to DEM to create more beautiful and also more understandable DTM. Virtual reality will be generated with additional illumination, atmospheric effect, seasonal changes, color space conversion, map projection etc.

The concept of virtual reality map is shown in Figure 5.

CONCLUSIONS

a. It was demonstrated that recent advances of multi-function remote sensing data have a lot of potential of data integration and analysis for applications.

2. Several examples of modeling for sustainable development were introduced to show how remote sensing and GIS can be applicable to the solution of global and local environment problems.

References

Murai, S (Editor), Asian Association on Remote Sensing: Remote Sensing Applications in Asia and Oceania, Hong Kong, 1991.

Ochi, S and Murai. S.; Simulation of Flood Flow with DEM and Vegetation Index (Japanese), SEIKEN, IIS, Univ. of Tokyo, 1989.

Shao Yun, Liu Hao, Lu Xingqiao, Guo Huadong; Effect of Frequency and
Polarization of SAR System on Target Detection, IEAS’97 and IWGIS’97, Beijing, China, August 1997.

Sinclair, Susan: Satellite for GIS Infrastructure Planning and Management, IEAS’97 and IWGIS’97, Beijing, China, August 1997, pp. 601-610

Tokunaga, Mitsuharu; Potential Applications of SAR Interferometry (Japanese); Workshop on New Technologies of Geomatics, Tokyo, Japan, September 1997, pp 35-43.

Tong, Qing Xi; Precise Spectral classification and identification in Hyperspectral Remote Sensing Domain. IEAS’97 and IWGIS,97, Beijing, China, August 1997.

<table>
<thead>
<tr>
<th>Multi-function</th>
<th>Data Integration and Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-spectral</td>
<td>Color Composition</td>
</tr>
<tr>
<td>Multi-frequency</td>
<td>Principal Component Analysis (PCA)</td>
</tr>
<tr>
<td></td>
<td>Hyperspectral Analysis</td>
</tr>
<tr>
<td>Multi-temporal</td>
<td>Change Detection (PCA etc.)</td>
</tr>
<tr>
<td></td>
<td>Trend Analysis</td>
</tr>
<tr>
<td></td>
<td>Multi-temporal Classification</td>
</tr>
<tr>
<td>Multi-resolution</td>
<td>Simulated high Resolution Image</td>
</tr>
<tr>
<td></td>
<td>Pan-sharpening</td>
</tr>
<tr>
<td>Multi-sensor</td>
<td>Data Fusion (optical + SAR)</td>
</tr>
<tr>
<td>Multi-source</td>
<td>Integration with DEM, GIS, GPS etc.</td>
</tr>
<tr>
<td>Multi-station</td>
<td>Stereo-matching for DEM/Contour Maps</td>
</tr>
<tr>
<td></td>
<td>Ortho-image</td>
</tr>
<tr>
<td></td>
<td>SAR Interferometry</td>
</tr>
<tr>
<td>Multi-polarization</td>
<td>Classification with HH, HV, VH and/or VV</td>
</tr>
<tr>
<td>Multi-media</td>
<td>Hand Copy/Soft Copy</td>
</tr>
<tr>
<td></td>
<td>Animation</td>
</tr>
<tr>
<td></td>
<td>Virtual Reality</td>
</tr>
</tbody>
</table>
Table 2 Forest Cover by Region: Scenario until 2050

<table>
<thead>
<tr>
<th>Region</th>
<th>Forest cover as percentage of land area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without H.I.</td>
</tr>
<tr>
<td>Tropical Asia</td>
<td>84.08</td>
</tr>
<tr>
<td>Tropical Africa</td>
<td>91.68</td>
</tr>
<tr>
<td>Sahelian Africa</td>
<td>31.31</td>
</tr>
<tr>
<td>Tropical Latin America</td>
<td>97.07</td>
</tr>
<tr>
<td>Central America</td>
<td>64.72</td>
</tr>
<tr>
<td>Europe</td>
<td>50.20</td>
</tr>
</tbody>
</table>

Remark: H.I. = Human Impacts, Values for 2025 and 2050 are predicted values

Table 3 Comparison of Soil Erosion: Before the Human Impact, Current and Predicted (2025)

<table>
<thead>
<tr>
<th>Erosion rate</th>
<th>Percentage of total land area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without H.I.</td>
</tr>
<tr>
<td>0 - 2 t/ha/yr</td>
<td>57.9</td>
</tr>
<tr>
<td>2 - 5 t/ha/yr</td>
<td>18.1</td>
</tr>
<tr>
<td>5 - 10 t/ha/yr</td>
<td>8.3</td>
</tr>
<tr>
<td>10 - 15 t/ha/yr</td>
<td>4.3</td>
</tr>
<tr>
<td>15 - 20 t/ha/yr</td>
<td>2.7</td>
</tr>
<tr>
<td>20 - 50 t/ha/yr</td>
<td>6.0</td>
</tr>
<tr>
<td>> 50 t/ha/yr</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Remark: H.I. = Human Impacts
Table 4 Prediction of Population Carrying Capacity based on Crop Production (Asakurat et al)

<table>
<thead>
<tr>
<th>a) Potential Arable Land (10^3 square kilometers)</th>
<th>Present Area</th>
<th>Potential Area</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>North American</td>
<td>2,671</td>
<td>4,604</td>
<td>1,933</td>
</tr>
<tr>
<td>South American</td>
<td>1,163</td>
<td>1,446</td>
<td>283</td>
</tr>
<tr>
<td>Europe & Asia</td>
<td>7,752</td>
<td>8,832</td>
<td>1,080</td>
</tr>
<tr>
<td>Oceania</td>
<td>478</td>
<td>1,812</td>
<td>1,334</td>
</tr>
<tr>
<td>Africa</td>
<td>1,688</td>
<td>4,681</td>
<td>2,993</td>
</tr>
<tr>
<td>Total</td>
<td>13,732</td>
<td>21,375</td>
<td>7,643</td>
</tr>
</tbody>
</table>

b) Potential Population Carrying Capacity

<table>
<thead>
<tr>
<th>Case</th>
<th>Condition</th>
<th>Estimated Population Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>Each country’s consumption</td>
<td>7.7 billion</td>
</tr>
<tr>
<td>Case 2</td>
<td>World average</td>
<td>9.0 billion</td>
</tr>
<tr>
<td>Case 3</td>
<td>American standard</td>
<td>4.0 billion</td>
</tr>
</tbody>
</table>

Table 5 Relation between Degradation Speed Index (DSI), Sensitivity Index (SI) and Socio-economic Status Index (SSI) in Trijuga Watershed, Nepal

<table>
<thead>
<tr>
<th>Location</th>
<th>DSI</th>
<th>SI</th>
<th>SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valley</td>
<td>3.33</td>
<td>0.25</td>
<td>2.69</td>
</tr>
<tr>
<td>Midland</td>
<td>2.46</td>
<td>0.42</td>
<td>6.23</td>
</tr>
<tr>
<td>Hill</td>
<td>4.95</td>
<td>2.63</td>
<td>2.01</td>
</tr>
</tbody>
</table>
Central America and Mexico

\[y = 21.637 \ln(x) - 29.643 \]
\[R = 0.9079 \]

Tropical Latin America

\[y = 17.607 \ln(x) - 7.1178 \]
\[R = 0.813 \]

Sahelian Africa

\[y = 16.872 \ln(x) + 12.305 \]
\[R = 0.7994 \]

Tropical Africa

\[y = 15.206 \ln(x) + 7.8446 \]
\[R = 0.8474 \]

Tropical Asia

\[y = 16.042 \ln(x) - 19.56 \]
\[R = 0.7987 \]

Europe excluding Iceland

\[y = 14.712 \ln(x) + 0.9315 \]
\[R = 0.7184 \]

Figure 1: Correlation Diagram between Population Density (logarithmic) and Cumulative Forest Loss
$f(t) = a(1-e^{-kt})$

Figure 2 Logical Curve for a Prediction Model with respect to Time

Figure 3 Suitability Model for Forest conservation
Figure 4 Impact of Deforestation to Flood and Landslide

(a) Flood Peak and Run-off with respect to forest Cover

(b) Landslide Frequency with respect to Vegetation Cover
(Landslide in Nakhon Sri Thammarat, Thailand in 1988)
(a) Existing Concept of 2D Paper Map

(b) New Concept of Virtual Reality Map

Figure 5 Comparison of Existing and New Concept for Map Production