
OPTIMAL PROCESSING TECHNIQUES FOR SAR 

David Stewart, Rod Cook, Ian McConnell 

NA Software, Roscoe House, 62 Roscoe Street, Liverpool, UK 
Tel: +44 151 709 4738, Fax: +44 151 709 5645 

email: stos@nasoftware . co . uk 

Chris Oliver 

DRA, Malvern, Worcestershire, UK 
Tel: +44 1684 895165, Fax: +44 1684 894481 

email: chris@sar . dra . hrng. gb 

KEY WORDS: SAR, Global Optimisation, 
Segmentation, Classification. 

ABSTRACT: In the history of SAR im­
age processing, many algorithms have been 
proposed to tackle the problems of segmenta­
tion, classification and edge detection. They 
are typically heuristic in basis, and more 
successful on some types of imagery than 
others. With the development of global 
optimisation methods it has now become 
possible to produce optimal techniques; that is, 
those which can genuinely achieve the optimal 
solution of the posed problem. The prob­
lem is characterised by an objective function 
and the chosen optimisation technique. The 
most successful and wide-spread method has 
been simulated annealing and we detail its 
application in the fields of segmentation and 
classification. The performance of the result­
ing algorithms on various SAR imagery is given. 

INTRODUCTION 

Simulated annealing is alone amongst other 
global optimisers , such as taboo search and 
genetic algorithms, in that it guarantees 
convergence to a global minimum. Geman 
and Geman (1984) were among the first 
to adapt the technique to image processing 
and there have been many other applications 
since. Typically, however, a less than complete 
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understanding of the nature of the problem 
has led to the introduction of heuristics into 
both the objective function and the algorithmic 
implementation. After a brief resume of 
the basics of simulated annealing, we will 
describe a cost function for evaluating image 
segmentations and classifications that is free 
from heuristics. We will then give a brief 
description of an algorithm incorporating this 
cost function and demonstrate its applicability 
to all sorts of SAR imagery. 

SIMULATED ANNEALING 

Simulated annealing is a technique for finding 
the global minimum of a given function, called 
the objective or cost function, over a configu­
ration space S. The cost function is such that 
the lower the value of C(s E 5) , the better 
the corresponding configuration. To be suc­
cessful it is necessary that the implementation 
allows the algorithm access to all areas of the 
configuration space. 
In this paper we will illustrate the application 
of this method in the fields of segmentation and 
classification. S will thus represent the space 
of all possible segmentations or all possible 
classifications into a fixed number of regions or 
classes respectively. 
Simulated annealing algorithms proceed by ran­
domly changing from one state in the configura­
tion space, say Si, to another, Sj - By evaluating 



the change in cost, 6C;j = C(sj) - C(s;), the 
algorithm decides via a probabilistic accep­
tance criterion whether to accept the new 
configuration or keep the current one. The 
acceptance criterion is dependent on the value 
of a parameter T, known as the temperature, 
which itself is updated after a fixed number 
of configuration changes have been considered. 
The criterion is such that a configuration 
change entailing an increase in cost is more 
likely to be accepted at a higher temperature 
than at a lower one. By slowly decreasing the 
value of T, we will avoid being trapped in 
local minima and will reach the optimal global 
solution. 
The parameters within the simulated annealing 
algorithm need careful tuning for the particular 
application, in particular the behaviour of the 
temperature T . Aarts et al. (1986) give a 
methodology for approximating the parameters 
which works reasonably well in practise. 

THE COST FUNCTION 

The definition of the objective function is 
dependent on the intended application and on 
what particular image features are desired in 
the final image. For general purpose segmenta­
tion and classification, the objective function is 
commonly composed of two competing terms. 
The first is derived from a single point statis­
tical model of SAR imagery whilst the second 
limits the behaviour of the boundaries between 
segments or classes. The addition of the shape 
term is necessary for otherwise the segments in 
the optimal segmentation would simply follow 
the lines of speckle in the original image 
whilst the optimal classification would just 
classify the speckle. Minimising this objective 
function is then equivalent to maximising the 
likelihood of the data fitting the segmentation 
or classification with the appropriate degree of 
qualification upon region shape. It is often 
the lack of knowledge about the relationship 
between these two competing terms that leads 
to the introduction of heuristics into the cost 
function. We can write the cost function as 

C = CA +sCs 

,vhere CA denotes the likelihood term and Cs 
the shape term. We define examples of these 
for the instance of intensity segmentation and 
classification below. The constant s quantifies 

the relationship between the two terms and 
we indicate how this value can be rigorously 
defined later. 

The Individual Terms 

For the Likelihood term, CA , we use the 
well known fact that the Gamma distribution 
provides a good model for SAR intensity data. 
We suppose, therefore, that we have an image 
containing r homogeneous regions or classes of 
gamma distributed L-look data. Let the data 
be represented by { x; Ii = 1, · · • , N} and Ij and 
µj, j = 1, · · ·, r, denote the indexing sets and 
means of the appropriate regions or classes. 
Then the probability for the data fitting the 
distribution is given by 

rrr IT LL L-1 
f(L)µ

1
Lxi exp(-Lx;jµj) 

j=l iEJ; 

Let Nj = llj I and let mj denote the sample 
mean, i.e. mj = if LiEI Xi - The log-likelihood 
is then calculated 'to be ' 

r 

A= a - L LNj(log(µj) - m,j/µj) 
j=l 

where the constant terms have been grouped 
into a. When the parameters µj are not 
known a priori, the estimates µj = mj pro­
vide the maximum likelihood solution for the 
log-likelihood. Since we want to maximise the 
likelihood, and simulated annealing is designed 
to minimise a cost function, we multiply the 
log likelihood by -1 to give the cost function: 

r 

CA= LNi log(mj) 
j=l 

Note that any constants can be removed since 
the annealing is driven solely by the change of 
cost . 
There have been many proposed models to 
describe the type of shape we expect segments 
to have and, analogously, the connectivity we 
expect of classes. Most of these are expressions 
of the size of the boundary or edge set . Here 
we choose one of the most simple and define 
the shape term to be given by 

1 
Cs= 2 L L (I -oL,L;) 

i jENhbd(i) 

where Li is the region label for a pixel and 
Nhbd(i) a defined neighbourhood. 
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The Relationship Between the Terms 

To define the shape penalty constant s we 
need to understand how the terms of the cost 
function interact. This is likely to change with 
respect to the looks of the image and the 
number of regions or classes. 
Since the annealing is driven by the change in 
cost 

it is necessary to determine the distributions 
for the likelihood difference and the shape cost 
difference. We want to find these distributions 
for uniform background speckle since in that 
way we can quantify the extent to which the 
change in shape term dominates the change in 
likelihood. 
To be more explicit, we wish to calculate a 
probability of false alarm, i.e. the probability, 
given there is no real edge, that the edge 
position is at a certain pixel on the strength 
of the change in likelihood rather than the 
change in shape. Mathematically we define 

Pta = Prob(ilCA < -silCs lflCs > 0) 

+Prob(ilCA > -silCslllCs < 0) 

+Prob(lilCAI > 0lflCs = 0) 

Having a universal value for Pta will then give 
the same degree of shape effect for whatever 
SAR imagery fits our models and for whatever 
the value of looks and region or class size. 
To calculate the above we thus need the 
distributions for the log-likelihood difference 
and the change in shape. Both are analytically 
intractable but can be approximated via simu­
lation. The variation of the distributions with 
respect to region sizes, number of classes and 
looks of the data can also be approximated in 
this fashion . Typical distributions are given in 
figure 1. 

THE IMPLEMENTATION 

There are two main considerations when im­
plementing an algorithm to minimise the cost 
function of the previous section. Namely 

1. In order to ensure the success of the 
annealing it is necessary to provide the 
capability to visit, in theory, all points 
of the configuration space. As such, for 
the results that follow, we employ a free 
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topological model and alter the segmen­
tation on a pixel by pixel basis. By 
making the smallest admissible changes, 
we also expect to achieve results of the 
highest possible resolution. 

2. To avoid the use of heuristics as far as 
possible. 

An outline of the segmentation and classification 
algorithm is as follows: 

1. Initialise the program. An initial tessel­
lation into a fixed number of regions or 
classes is required along with the deter­
mination of the annealing parameters and 
the shape penalty constant s using the 
analysis described above. 

2. For a number of outer iterations. 

(a) Set T . This is usually a function of 
the number of outer iterations . 

(b) For a number of inner iterations . 

i. Perturb the current segmenta­
tion or classification. In the 
segmentation case this involves 
moving a pixel between neigh­
bouring segments and as long 
as this maintains segment con­
nectivity and existence. In the 
classification case this is simply 
a random change of t he pixel's 
class label. 

11. Evaluate the change in cost, LlC. 
m. Refer to the acceptance criteria. 

The acceptance probability most 
widely used equals 1 if LlC < 0 
and exp(-LlC /T) if LlC > 0. 

1v. If the new configuration is re­
jected, reinstate the old one. 

3. Tidy up. In the case of segmentation it 
is feasible to run a post-process merging 
stage to remove spurious regions . 

RESULTS 

We apply the algorithms detailed above to var­
ious SAR imagery in figures 2 to 5. The ratio 
image of figure 2 indicates how successfully 
the segmentation fits the original dat a . The 
segmentation and classification of the AIRSAR 
image, figure 4, are both visually impressive 



(a) Example of the distribution for .6.CA 
derived from simulation. 
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(b) Example of the distribution for .6.Cs 
derived from simulation. It is a mixture of 
several multinomial distributions. 

Figure 1: Typical distributions for the likelihood difference and change in shape 

whilst differing in some small details. Figure 
5 gives the result of using the segmenta­
tion scheme in the important application of 
differentiating between virgin rainforest and 
clearing. 
The shape penalties used for each segmentation 
and classification are widely different, yet all 
correspond to the same probability of false 
alarm. It can be seen that the resultant shape 
effect is roughly equivalent in all the images. 
Future work involves finding improvements in 
the approximations for the log-likelihood differ­
ence and the change in shape distributions. It 
is hoped that this will make this effect even 
more apparent. 
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Figure 2: Top: X-band SAR and annealing segmentation. Bottom: Edge map and ratio image. 

Figure 3: Annealing classification and edge map for the SAR image of figure 2 
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Figure 4: Top: AIRSAR image. Middle: Annealing segmentation and edge map . Bottom: 
Annealing classification and edge map. 
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Figure 5: Identification of clearing in the Brazilian rainforest. The original image was processed 
by a 7 by 7 mask to provide an image of normalised log estimates. This image was processed by 
the annealing segmenter and then thresholded. Finally, the resulting edge map was overlaid on 
the original data. 
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