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ABSTRACT 

The classification of complex geographic datasets remains a long-standing problem. From a geocomputational perspective, the many 
new techniques provided by computer science can offer some significant performance enhancements, but also give rise to a new set of 
problems. The use of neural networks for classification is one such example, where separating boundaries in attribute space are 
constructed from hyperplanes produced by the hidden-layer nodes. In an earlier work, the authors have shown how the Boundary 
Misclassification Rate (BMR) matrix can be used to analyse the functioning of the neural network classifier during the learning phase 
and help predict the classification ability for a given task. 

We now extend this to show how the learning ability of the network can be optimised to the task at hand, by using the BMR matrix to 
spawn additional hidden-layer nodes as required, during or prior to, the learning process. Importantly, this process can be both 
automated or user-controlled, so that the accuracy of the classifier can either be maximised across all classes, or specific class 
separations can be targeted for attention, as meets the user's requirements. 

Results on a real world GIS dataset are presented and compared to results obtained previously without this optimisation; these show 
encouraging improvements in performance. 

1. INTRODUCTION 

Modem technology has vastly expanded the range of measurable 
attributes that can be gathered and analysed from a particular 
geographic space, especially with the improvements in remote 
sensing technology and the increase in available platforms (e.g. 
Wilkinson et al., 1995). In order to make sense of these 
increasingly numerous (and varied) types of measurements, some 
form of data reduction and/or grouping is necessary that 
maintains the focus of inquiry set by the researcher. As such, 
classification is one of the more common transformations that 
data undergo. Simply put, the task is to produce a mapping, 

~P __ r_(_n_)-+ IF 

where p is the number of input variables, or geodata type 
attributes and q is the number of output variables, or classes. 
Unlike reduction techniques such as principle components 
analysis or canonical variate analysis, the goal of classification is 
to select output classes from a ( often) smaller and different 
phenomenological domain (II, the classification scheme) to that 
of the input attributes (\R). These transformation models can be 
catagorised as unsupervised or supervised classifiers. In 
unsupervised classification, a particular II, or scheme, is chosen 
by the classifier, normally based on some form of cluster analysis 
applied in \R. In the case of supervised classification, of which 
our classifier is a representative, the scheme is chosen by the user 

and the classifier learns an approximation r' (p) to the 

required transfer function f(p). Hence the (common) scheme of 
ground cover type is often derived from an attribute domain that 
may comprise several bands of LANDSAT data, as well as 
ancillary data such as digital elevation models, rainfall, etc .. 
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Supervised classification schema are popularly used by the GIS 
professional as an aid to the decision-making processes in 
disciplines such as land management, mineral exploration, 
environmental science and habitat modeling. The dominant forms 
of these classifiers are based on well-established statistical 
models, themselves derived from the theories of Baysian 
estimation (Mardia et al., 1979). The maximum likelihood 
classifier (MLC) is an example and usually considered the better 
of these classifiers, at the expense of computational overhead 
(Rao, 1973). These classifiers, on the whole, try to estimate the 
transfer function f(p) by modeling it as a known statistical 
distribution <l>[T:p] (T being the defining parameter set of <1>), 
which assumes a stochastic sampling process in selecting a 
learning, or training set in \R, as well as the assumptions of the 
associated per-class probability density functions «!>lx). The most 
common distribution used is the Gaussian, as in the MLC. 
Because of the requirement that a given «j>(x) approximates the 
actual attribute population distribution for that class, these 
classifiers have problems with nominal or ordinal attribute data, 
as attribute values are assumed to be ranked when constructing 
«j>(x). These classifiers also require a minimum number of samples 
in each representative class within the training set to allow a 
meaningful population distribution to be derived for the modeling 
of «j>(x). The exact number is dependent on the number of degrees 
of freedom for that particular <1> and the dimensionality of the 
attribute space,p (Dunteman, 1976). 

An artificial intelligence (Al) approach to classification has lead 
to the development of classifiers whose basis is computational 
rather than statistical in nature. Decision trees, genetic algorithms 
and artificial neural networks are all examples of this alternative 
approach (Lees, 1994). Although these classifiers can often 
themselves be modeled statistically (Sarle, 1994), it is important 
to note one fundamental difference; no statistical assumptions are 
made in the implementation of these models, other than the 
fundamental one that Euclidian distance has some meaning 
within the attribute space. As such, on the one hand, they do not 



suffer from the limitations noted above, but on the other, they 
suffer from their own unique set of problems, as well as from the 
limitations of the classification philosophy itself. The authors, in 
previous papers (German eta/., 1997; Gahegan & German, 1996) 
have focused on artificial neural networks, specifically a variant 
of the multi-layered perceptron (MLP) coined DONNET 
(Discrete Output Neural NETwork) and addressed some of these 
problems, as well as issues of performance, as compared to the 
statistically derived classifiers. In this paper, we will address one 
further problem, that of building complex decision boundaries, 
which leads to either overall improved performance as measured 
on a given set of training or validation data, or to class-specific 
improvements, depending on the information required by the 
user. 

2. Model Complexity - Hyperplane Analysis 

2.1 Overview of DONNET- Previous Work 

DONNET is a software simulation of an MLP, written to test the 
research propositions of an ongoing project at the Dept. of 
Geographic Information Science, Curtin University. It is available 
via the World Wide Web to other interested researchers (see 
address at the end of this article). Essentially, DONNET is an 
extension of the philosophical stance taken for the task-based 
MLP (Brieman et al., 1984; Dunne et al., 1992). Within this 
conceptual model, each node of the (single) hidden layer is 
responsible for the generation of a separating hyperplane within 
the p dimensional attribute space, whose task is to separate out 
one particular class (c;) from one other (c). The output layer 
nodes and associated connections are then responsible for the 
amalgamation of one or more of these hyperplanes into q-1 class 
boundary decision surfaces. In earlier work (Dunne et al., 1993; 
German & Gahagan, 1996) it was shown that, assuming complete 
linear separability of the classes, q x (q-I) / 2 hidden layer nodes 

are required to guarantee convergence on a solution for r' (p) . 
It was also noted that such a formulation works well, even when 
several of the classes are not linearly separable. This was shown 
(German et al., 1997) to be due to the fact that often, one 
hyperplane could separate out more than one pair of classes (eg 
c1:c2 and also c 1:c4), making other hyperplanes "redundant". 
These redundant hyperplanes were then used by the network to 
construct more complex piecewise linear decision surfaces that 
could be used elsewhere for non-linear cases. In the majority of 
applications, this provides excellent results and a comparison of 
DONNET' s performance in relation to other Al and statistical 
techniques can be found in Gahegan & German (1996). However, 
in certain cases, where a majority of classes are not linearly 
separable from any other, performance can be poor. It is this 
situation we wish to address. 

2.2 Using the BMR and Task Matrices to Determine 
Redundancy 

The BMR (Boundary Misclassification Rate) matrix is described 
in German et al. (1997). It is derived from the class confusion 
matrix (e.g. Dunteman, 1976) and details the effectiveness of all 
pairwise class separations in terms of errors of omission and 
errors of commission (single-error boundaries), or both (dual
error boundaries). A standard task matrix is derived from the 
ouptuts of the hidden layer and shows the effective pairwise tasks 
being done by each hyperplane (or hidden-layered node). It is 
often used as a basis for pruning such networks (Brieman et al., 
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1984; Dunne et al., 1992). From this, a zero-confusion task 
matrix can be produced, as defined below. A worked example 
will show how redundancy can be inferred from these matrices. 

We will use a dataset from the Kioloa area of New South Wales, 
Australia, which has been made available as a NASA pathfinder 
data-set through the Australian National University in Canberra 
(Lees and Ritman, 1991). There are 9 floristic-level classes to be 
delineated from 11 attribute layers (four of these represent 
nominal or ordinal data, four are Landsat TM bands) i.e. q = 9 
and p = 11. The classifier is therefore initially set up with 11 
input nodes, 36 hidden nodes (calculated from the formula given 
above) and 9 output nodes. This dataset is considered a "hard" 
classification problem, with a large overlap of class signatures in 
the data. Prior to training, the DONNET classifier is fitted with 
weights derived from Fisher's linear discriminant functions 
(Mardia et al., 1979; German, 1995), rather than just randomly 
selecting weights. Table 1 shows the initial class confusion 
matrix of the classifier on the training set. Table 2 shows the 
associated BMR matrix, where positive figures represent errors of 
omission, negative figures are due to errors of commission and 
bold typed figures are dual-error figures. The dual-error figures 
are indicative of complex decision boundaries for which a single 
hyperplane may be inadequate for class separation (see Figure I). 
Using the following notation: 

• { T}h; is the set of all tasks which node h; performs, 
• { T min} h; is the set of all tasks performed by h; as well as, or 

better than, any other node, 
• Th; is the original, or primary task of h;, as performed by that 

node, 
• {½}h; is that task ½ performed by node h;, that is also the 

primary task of node hj, 
• SCORE[Th;] is the confusion with which h; performs its 

primary task, 

we can define the following levels of redundancy: 
A node h; is considered to make node hj partially redundant if: 

SCORE[ T,,j] ~ SCORE[ { ½ }h;]. 
A node h; is considered to make node hj completely redundant if: 

SCORE[ T,,j] ~SCORE[{½ }h;] = 0. . 

Nodes h; and hj are considered compatibly redundant if : 

SCORE[{Tmin}h;)= SCORE[{Tmin}hj ]= 0, 
and both h; and hj are completely redundant. In other words, h; 
and hi are compatibly redundant if their primary tasks are 
performed with zero confusion by other nodes and they both 
perform the same set of zero-confusion tasks. These definitions 
will be used in conjunction with the zero-confusion task matrix. 
The importance of compatibly redundant nodes is this: given a set 
of compatibly redundant nodes, it is only necessary to maintain 
one in its original configuration, the others may be removed or 
moved elsewhere in attribute space without significant 
degradation of the performance of the original set of tasks. 

Table 3 gives the hidden-layer zero-confusion task matrix. This 
matrix lists all nodes that perform tasks with zero confusion, i.e. 
perfect separation. The node number h; is listed at the start of 
each row, followed by those tasks that it performs with zero 
confusion. There are several points to note from these tables: 
I. As training has not yet been commenced, compatibly 

redundant nodes, as identified from the zero-confusion task 
matrix, are not to be pruned - they will be used by the 



network elsewhere in !JlP for construction of non-linear class 
decision boundaries (more precisely, piecewise linear class 
decision boundaries). 

2. It follows that training time could be significantly reduced 
by moving these redundant hyperplanes into the areas of 
concern prior to commencement of training. The areas of 
concern are those class pairs shown in bold in the BMR 
matrix. 

3. Additional hyperplanes can be constructed and placed in the 
appropriate areas if there are not enough redundant nodes 
available, or more are required during training. 

3. MANIPULATING HYPERPLANES 

3.1 Positioning hyperplanes prior to training 

The implementation of the above modifications requires some 
caution in the initial setup of the additional hidden-layer nodes. If 
analysis of the BMR and task matrices reveals the need for 
additional hyperplanes, or movement of redundant ones, they 
must be placed in position in attribute space so as not to perturb 
the current state of the network (in terms of the error, or cost 
function) too greatly. Further, new nodes and weights must be 
added so as to avoid having parallel hyperplanes within the 
attribute space, as the minimisation routines used by the network 
have problems distinguishing between these when calculating the 
partial derivatives necessary for weight updates. Let us return to 
the example analysis of the network with the Kioloa dataset. 

Note that within the body of this text, quoted classification 
accuracy (%ANR) is a percentage based on the validation set, not 
the training set and is calculated as the average of the 
classification performance of each class, rather than a total . This 
avoids any misrepresentation due to large differences in class 
sizes, a common problem with real-world data. Performance on 
the training set, as well as overall percentages (%PCC), are 
quoted in the performance table (Table 7) at the end of this 
article, to allow comparisons with other classifiers. 

First of all, it is necessary to identify areas that may require 
additional complexity (in terms of the class decision boundary). 
Looking at the BMR matrix of Table 2, we note that the decision 
boundaries at c1:c2 (10.4%), c1:c4 (12.4%), c1:c5 (10.7%), c4:c5 

(17.8%) and c4:c1 (9.8%) are the major contributors to the total 
dual-error figure. They have resulted from a complex separating 
surface, an overlap of class data, or a combination of both, the 
implication being that these errors will not be significantly 
reduced by simple movement of the (single) separating 
hyperplane. 

We can now use the zero-confusion task matrix of Table 3 to 
identify compatably redundant hyperplanes. Here we note that 
nodes 7, 14, 20, 25, 29, 32 and 34 are compatably redundant 
(node 21 is not, as its primary task, T21 , is not performed by the 
other nodes). This results in 6 redundant hyperplanes that can 
now be repositioned in proximity to the decision boundaries 
identified above from the BMR matrix. As an example, let us 
concentrate on the c4:c5 boundary (node h22 is primarily 
responsible for this task - T22). The compatibly redundant 
hyperplane primarily associated with task T7 (separating class I 
and 8) can be repositioned as follows: 

I. Construct a line between the group centroids for class 4 and 
class 5. 
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2. Calculate the intersection point P between this line and the 
hyperplane associated with h22 • 

3. Construct a new hyperplane HA passing through P with some 
small offset angle a 1 (typically a 1 < I 0°) from the primary 
hyperplane H22 -

4. Fit the coefficients of the polynomial describing HA as input 
weights to the redundant node h1 . 

5. If further hyperplanes H8 , He, .... are to be associated with 
this boundary, fit as above, but with new angles a2, a3, •.•• 

such that a 1 * a2,t,. a3 etc. 

(In actual fact, any reasonable method of calculating the 
hyperplane HA could be used here, providing it positions the 
hyperplane within the error envelope associated with the decision 
boundary and ensures HA is not parallel with H22). 

This process is repeated for each redundant node that is to be 
refitted. In this example, there are a total of 6 compatibly 
redundant nodes identified from the task matrix and 11 dual-error 
boundaries identified from the BMR. It is important to note that 
at this stage (prior to training), the size of the dual-error figures in 
the BMR matrix is not indicative of the complexity of the 
boundary. The BMR matrix only allows us to discriminate 
between dual-error and single-error boundaries. With this in 
mind, we will arbitrarily assign one redundant hyperplane (node) 
to each of the first 5 dual-errors. The U weights are recalculated 
as per German & Gahegan (1996) and a new initial classification 
performance figure of 48.03% is calculated for comparison with 
the original network (51.9%). This initial figure is now slightly 
lower, but we would expect this as we have "manually" placed 
the redundant hyperplanes, reducing slightly the sub-optimal fit 
that was given from the calculation via the linear discriminants. 
What we will expect to see is a convergence on a final error 
figure within fewer training epochs than that achieved with the 
original network. 

3.2 Initial training 

Both the original and the repositioned networks are now trained 
on the same dataset. The total network error per epoch is plotted 
for each in Figure 2. As expected, the repositioned network 
reaches a stable minimum in a significantly smaller number of 
epochs (approximately 60 as opposed to 180) and goes on to a 
slight improvement in classification of 61.2 % over the original's 
60.8%. The class confusion matrix is shown in Table 4. There is 
no significant improvement if the network is allowed to train 
further (performance on the validation set peaks at 430 epochs at 
62% - see Figure 3) other than overtraining. For any significant 
increase, we must look at increasing the dimensionality of the 
input data, or adding hidden layer nodes. 

3.3 Adding hyperplanes 

If the network is examined after 60 epochs, the BMR of Table 5 
will result. As demonstrated above, a simple continuance of 
training will not lead to a significant improvement in 
classification, so we shall add further hidden-layer nodes before 
additional training. Note that the majority of error (in Table 5) is 
now due to dual-error boundaries, as the network has 
repositioned the available hyperplanes to the best of its ability, 
eliminating most single-error boundaries. From this BMR matrix, 
we can now select the c1:c3, c1:c4 and c4:c5 task separations as 
contributing to the majority of the dual-errors (tasks T2, T3 and 
T22). We require additional hyperplanes for these decision 
boundaries, implying further nodes must be added to the hidden 
layer. Using the technique presented in Section 3.1, we now add 



four more hyperplanes (nodes) to these areas of attribute space 
and retrain the repositioned network. In practice, the network is 
run for a few short iterations (we use IO per hyperplane) between 
the addition of each node to optimise the output layer 
connections, thereby reducing the risk of moving too far away 
from the previous local minimum'. The resulting classification 
figure after training for a further 150 epochs (over the original 
60) is now 67.3%, with the class confusion matrix for the training 
set shown in Table 6. (c.f. the standard network left to train for 
200 + 150 epochs still only has a best classification rate of 
61.2%). 

4. CONCLUSIONS AND FURTHER WORK 

The above techniques can be used to reduce trammg time, 
produce a better overall classification, as we have done here, or 
target specific classes for greater accuracy. For instance, in the 
Kioloa dataset, class 7 (rainforest) may be required to be 
delineated with greater accuracy than that of the other classes for 
the purposes of ecological study. In this case, the additional 
hyperplanes can be placed along the error envelope of the 
appropriate boundaries (eg. c4:c7, c5:c7 and c6:c7). The method 
could be extended to "freezing" hyperplanes that are giving 
adequate performance and then constraining the remaining 
hyperplanes to the area of interest in attribute space. One question 
that remains unanswered is how many additional nodes are 
feasible, or how far one persists with adding nodes during 
training. Gains in classifier accuracy decrease with additional 
complexity, to the point where further additions provide no 
further gain when tested on the validation set (for this dataset, an 
additional 2 nodes gives the peak figure of 68.6%). Further work 
could consider some metric to describe the class overlap 
complexity to be used by the network to determine the probable 
number of additional nodes required for a given level of accuracy. 

With all these methods, it is important to measure the 
classification performance on a validation set, as we have done 
here, to avoid the trap of overfitting the network to the training 
data and losing generalisability. For a comparison, Table 7 shows 
the performance of DONNET, both modified and unmodified, 
with an MLC and a decision tree (C4.5) on the same dataset. 
Note the greater generalisation ability of the neural networks over 
the other classifiers (compare %ANR validation scores). 

With prudent use, these classifiers can produce classification 
schemes with greater accuracy and without the limiting 
assumptions of the traditional statistical methodologies. Their 
further advantages lie in the ease with which disparate types of 
data (e.g. nominal and ordinal ancillary data, remote-sensed data 
etc.) can be combined, as well as the ability to model a 
distribution with relatively few examples. 

1 The network "learns" by searching for a minimum in 
some defined multi-dimensional error space (Ew, where w 
>> p), analogous to the weight space. So at any particular 
point of the training phase, the network has calculated and 
stored the last minima found and the directions required to 
get there. We do not want to invalidate this information by 
moving too far from this point, when we add an extra node 
and its weight connections. 
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FIGURE I : Reducing error at complex non-linear class boundaries. (a) Original single hyperplane used to 
model the decision surface. (b) Using two hyperplanes to model the same decision surface. 

0 

0 

X X 
X X X 

X X X X X X X X 
X X X 

X X X X 

X X X X X 
0 

0 X () 
X u 

0 0 X 0 0 0 
0 

0 0 0 0 
0 0 

0 0 0 0 0 0 

0 oO 0 0 0 0 0 
0 0 

0 0 
0 

FIGURE 2 : Comparison of error for standard (fi_S) network and repositioned (fi) network 
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FIGURE 3 : Error for repositioned network, 0 - 1000 epochs 
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Table 1 : 9 Class Confusion Matrix (0 iterations) 
Class1 Class2 Class3 Class4 Class5 Class6 Class? Class8 Class9 Totals 

True 1 162 1 0 17 15 0 4 5 0 204 

True 2 24 0 0 5 3 3 5 4 0 44 

True 3 25 0 1 1 3 0 4 1 0 35 

True4 42 0 0 97 21 2 6 0 0 168 

True 5 22 0 0 22 73 1 3 0 0 121 

True 6 10 0 0 31 6 17 1 0 0 65 

True 7 14 3 0 9 7 0 25 0 0 58 

True 8 0 2 0 0 0 0 0 109 0 111 

True 9 0 0 0 0 0 0 0 0 333 333 

Table 2 : 9 Class BMR Matrix (0 iterations) 

Classl Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Av2 
Class! - 10.4% -9.7% 12.4% 10.7% 7.3% +5.7% 2.2% 0% 7.3% 
Class2 - - +2.2% 2.5% -1.1% -1.6% 4.3% -1.1% 0% 2.9% 
Class3 - - - 0% -2.3% -0.9% -2.9% -1.2% 0% 2.4% 
Class4 - - - - 17.8% -11.8% 9.8% 0% 0% 6.8% 
Class5 - - - - - +1.0% 3.0% 0% 0% 4.5% 
Class6 - - - - - - 4.7% 0% 0% 3.4% 
Class7 - - - - - - - 0% 0% 3.8% 
Class8 - - - - - - - - 0% 0.6% 
2lass9 - - - - - - - - - 0.0% 
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Table 3: Zero Confusion Task Matrix for 9 Class Example (0 iterations) 

Hvoervlane Primarv Class Seoaration Zero Confusion Tasks 
6 Task 6 (c1:c1) 6, 13,19,24,28,31,33,35 
7 Task 7 (c1:cs) 7, 14,20,25,29 ,32,34,35 
14 Task 14 (c2:c8) 7,14,20,25,29,32,34,35 
20 Task 20 (c,:c8) 7, 14,20,25 ,29 ,3 2,34,35 
21 Task 21 (c3:C9) 7, 14,20,25,29,32,34,35 
25 Task 25 (c4:c8) 7, 14,20,25,29,32,34,35 
29 Task 29 (c,:c,) 7,14,20,25,29,32,34,35 
32 Task 32 (c6:c8) 7, 14,20,25 ,29 ,32,34,3 5 
34 Task 34 (c7:c8) 7,14,20,25,29,32,34,35 

Table 4 : 9 Class Confusion Matrix for standard network (200 iterations) 

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Totals 

True 1 183 2 1 11 2 3 1 1 0 204 

True2 10 24 3 3 2 0 0 2 0 44 
True 3 12 1 15 2 1 0 3 1 0 35 

True4 20 1 0 125 11 4 7 0 0 168 

True 5 15 1 0 20 83 1 1 0 0 121 

True 6 7 2 0 18 4 33 1 0 0 65 

True 7 5 1 0 10 1 1 40 0 0 58 

True 8 1 1 0 0 0 0 0 109 0 111 

True 9 0 0 0 0 0 0 0 0 333 333 

Table 5 : 9 Class BMR Matrix (200 iterations) 

Class! Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Avg 
Class! - 5.0% 7.4% 11.2% 9.0% 3.3% 2.7% 0.6% 0.0% 4.9% 
Class2 - - +5.6% 1.7% 2.7% 2.4% 5.2% -2.3% 0.0% 3.1% 
C!ass3 - - - 0.0% -2.3% +0.9% -2.9% -1.2% 0.0% 2.5% 
~lass4 - - - - 12.9% 10.7% 7.5% 0.0% 0.0% 5.5% 
Class5 - - - - - 1.9% 3.0% 0.0% 0.0% 4.0% 
Class6 - - - - - - 3.6% 0.0% 0.0% 2.8% 
Class7 - - - - - - - 0.0% 0.0% 3.1% 
Class8 - - - - - - - - 0.0% 0.5% 
Class9 - - - - - - - - - 0.0% 

Table 6 : 9 Class Confusion Matrix for reoositioned network + 4 extra hidden nodes (60 + 150 iterations) 
Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Totals 

True 1 191 3 0 5 4 1 0 0 0 204 

rrrue 2 6 31 0 2 3 0 1 1 0 44 
rrrue 3 5 1 25 0 1 0 2 1 0 35 
True4 14 1 0 146 4 1 2 0 0 168 

True 5 11 1 1 12 95 1 0 0 0 121 

rrrue 6 4 4 0 10 6 41 0 0 0 65 
True 7 3 2 0 5 1 3 44 0 0 58 
True 8 1 0 0 0 0 0 0 110 0 111 

True 9 0 0 0 0 0 0 0 0 333 333 
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Table 7 : Performance of Classifiers on the Same Dataset. The MLC (Maximum Likelihood Classifier) 
figures are from Fitzgerald & Lees, 1993. The Decision Tree figures were produced with the package C4.5. 
DONNET A is the standard neural network. DONNET B is the modified network with 4 additional nodes in 
the hidden layer. 

CLASSIFIER TRAINING SET VALIDATION SET 
%PCC 

MLC 50.50 
Decision Tree 78.31 
DONNETA 79.46 
DONNETB 89.20 
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