D. Fritsch, M. Englich & M. Sester, eds, '|APRS', Vol. 32/4, ISPRS Commission IV Symposium on GIS - Between Visions and Applications,
Stuttgart, Germany.

288 IAPRS, Vol. 32, Part 4 "GIS-Between Visions and Applications", Stuttgart, 1998

INTEGRATED USE OF SPATIAL DATA AND LEARNING ALGORITHMS TO DETECT WATER QUALITY TRENDS

Regina T. Kishi
Stephan Fuchs

Hermann H. Hahn

Institut fur Siedlungswasserwirtschaft - ISWW
Universitat Karlsruhe
Am Fasanengarten
76128 Karlsruhe — Germany
E-mail: kishi@iswws1.bau-verm.uni-karlsruhe.de

ABSTRACT

This paper presents the first results of a study which investigates river basin water quality management based on the
ability of GIS to integrate different data sources into a common geographical database. The overall objective of this
research is to develop a scheme for water management and improve the likelihood of detecting water quality trends and
to determine if variability in water quality parameters among a number of catchments can be explained by their
differences in topography, land use, soils and demographic data. The expected benefits of the research are related to the
acquisition of a description of the water quality in basins using easily available data, as satellite imagery or maps, that
can be used in regions where adequate observations are not available.

1 INTRODUCTION

One of the main tasks of water pollution control is to
assess temporal and spatial variations of water quality and
the factors and processes which influence it. Data and
information about the basin, current land-uses, potential
pollution sources, as well as its localization are essential
for the management.

Several processes involved in pollution transport are
complex and depend on a wide range of combined
phenomena. The combination of different factors increase
the potential of a pollution source. For example, erosion
rates depend not only on the soil type, but on the
combined effect of soil, slope, soil coverage and rainfall
intensity.

The understanding of environmental processes demands
appropriated information and data, but its availability is still
one of the main problems to be solved. Most of the
hydrologic variables vary along the basin and their
analysis demands the processing of great amount of
spatial data.

Current developments in the fields of digital information
processing, automation of map recognition and spatial
data capture make the use of more detailed data easier
and more attractive, introducing changes in the
development of water quality studies. The ability of GIS to
integrate different spatial data layers in a common
geographic database is a powerful tool in this sense.

In the present paper is described an approach for regional
water quality assessment that compensates the lack of
field observations using information derived from current
available sources, as satellite imagery or digital terrain
models. Existing data are processed within a GIS
environment for the computation of parameters that
describe the spatial variation of significant variables within
the basin. These parameters are later used to feed a
water quality model.

2 METHODS

2.1 Overview of the method

Pollution loads (dissolved or suspended) carried into
streams depend on factors like land cover, soil use and
meteorological, geological and hydrological characteristics
of the basin. Therefore, an adequate description of their
spatial variation provides clues about the water quality
within the basin. Many studies report on the relationship
between the chemical composition of streams and
catchment characteristics (Jordan et al., 1997; Dillon &
Molot, 1997; Wolock et al., 1990). Part of the necessary
information does not experience great temporal variations
and can be obtained from available maps, others, like
land-cover, can be estimated from remote sensing
imagery. There is also the possibility to integrate other
information sources like demographic and economical
data, available in form of official statistical reports.

In this approach, contaminant transport is described as a
function of spatially referenced land-surface and stream-
channel characteristics. For this purpose we analysed
basin attributes like land-use or topography to estimate
trends in water quality.

The Group Method of Data Handling (GMDH) algorithm
was used to perform the information fusion and study its
correlation with water quality observations. This kind of
model is characterised by its ability to select the more
suitable combination within the input variables set, using
an algorithm that resembles the natural selection principle.
In each iteration, the weakest variables are discarded and
substitutes are generated as combination of the strong
ones, in form of polynomials of second order.

Nitrate was chosen to perform the first set of tests.
Annually averages of nitrate concentrations in rivers were
considered. Nitrate is highly soluble and easily leached
from soil, because of this the transport of nitrate takes
place principally by sub-surface and groundwater flow.
Earlier works showed that the principal sources of nitrate
in surface waters are agricultural drain water, raw and
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treated sewage discharges, industrial discharges, Table 1.- Database
pastures, livestock feed lots and landscaped urban areas -
(Beudert, 1997). Currently, the possible harmful effects of Data Source Information
livestock on the surface waters and groundwater is being : P :
A ; Multispectral satellite imager Soil Use

studied in the USA (Cressie, 1997). The same author P gery Roughness Coefficient
reports that the EPA (U.S. Environmental Protection - :

- ) Digital terrain model Slope
Agency) attempts to control pollution from feedlots with Flow direction
concentrated animal since 1972. Basin Limits

2.2 Study area

The study area is the Neckar river basin in Baden-
Wiurttemberg — Germany. Its total drainage area is
approximately 14000 km2. The basin of Neckar river
covers a significant part of south-west Germany and has
intensive agricultural activity although, as it happens
commonly in Germany, it is densely populated. A set of 32
sub-basin, displayed in figure 1, were chosen to perform
the analysis described in the following sections.

Kocher

S Water quality station
/\/ Wwatershed

River

Figure 1.- The Neckar river basin and sub-basins

2.3 Database

The basis for the database consists of multispectral
imagery, a digital terrain model (DTM) of the basin, solil
maps, statistical data and hydrological monitoring data
(see table 1). This information was stored and processed
in a GIS in form of information layers. Since the basin
comprises an extent area, the database is very big. GIS
functions were used to estimate spatially referenced
catchment attributes. The availability of the information in
form of GIS layers enabled its combination via
mathematical operations of layers or overlay. Table 1
shows a summary of the information sources and the
computed parameters, that are discussed in more detail in
the following paragraphs.

River Network
Topographic Index
Flow Time

Distance to River
Network

Population

Livestock

Industry Type
Agricultural Production

Statistical Data

Soil Map Infiltration Capacity
Erodibility
Hydrological Monitoring Water Quality Data
Rainfall Data
Flow Data

Multispectral imagery:

A key point in water quality is associated to human
activities developed in the basin. Man is able to introduce
great changes in the landscape and alter hydrological and
chemical properties of the basin. Since the survey of
pollution sources and land use is very expensive and time
consuming, information about land cover and soil use was
obtained classifying multispectral satellite imagery. The
spectral data set comprises Landsat imagery captured in
1993. Soil use within the basin was classified in 16
classes. The resulting image, with spatial resolution of 30
meters, was introduced into the GIS environment for its
combination with the other digital data.

Topography:

DTM are commonly used for the computation of
topographical information as local slope, aspect or altitude
profiles and have gained recognition in the field of spatial
modeling. They can be interpolated from contour line
maps or obtained using laser scanner technology. In the
study presented here was used a 30 meters resolution
grid, compatible with the resolution of the satellite
imagery. New information layers were computed from the
DTM: slope and flow direction, drainage network, specific
catchment and distance to the drainage network and to
the outlet.

In order to compute some of the parameters, flow was
simulated over the DTM. The flow direction is based on
the algorithm described by Jenson and Domingue (1988).
The method considers that each pixel discharges into one
of its eight neighbours, the one located in the direction of
steepest gradient (figures 2a and 2b). The local gradient
determines the flow direction at each pixel and the set of
directions over the matrix defines flow paths (figure 2.b),
which have the constraint that the flow occurs only
downwards, from an upper cell to a lower one or to a cell
with the same elevation. The obtained paths must also
end at the borders of the elevation grid. Since a DTM may
have depressions where an uphill flow would be
necessary, it is practical to identify and “fill” them before
estimating the flow paths. This task is performed within an
iterative process, marking pixels with undefined flow
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direction and filling their watershed up to a value that
satisfies the imposed restrictions.

The catchment of a selected point within the raster grid
can be obtained grouping all pixels whose flow reaches
this point (in this study, this point is generally the location
of the water quality sample station). This is done following
the flow paths upwards, starting at the outlet, till a cell is
reached, which does not have any neighbours discharging
into it (hatched area in figure 2b).

Information about the drainage is obtained from the
specific drainage area of each pixel (figure 2c). Since the
flow paths converge to the outlet, the pixels that receive
more discharges are associated to the stream channels. A
synthetic drainage network can be estimated from the flow
accumulation grid.

The distance to the outlet along the flow paths can be also
computed, following the flow directions along the matrix.
The automatic extraction of catchment properties from
DTMs has been emphasised by Jenson and Domingue
(1988) and Donker (1992).
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Figure 2.- Information derived from a DTM. (a) DTM;
(b) flow paths; (c) specific drainage area; (d) distance
to the outlet

Statistical data:

Another part of the database is related to statistical
information. The Statistical Office of Baden-Wirttemberg
provides wide information about the activities in the basin.
Variables considered relevant for water quality were
chosen: Population, livestock production, industry type,
industrial production and agricultural production.

Hydrological data:

Data from the rainfall gauges were also utilised to
interpolate a grid, which was integrated to the raster data
set. Data for the period 1993-1996 were supplied by the
national meteorological institute (Deutsche Wetterdienst -
DWD).

Water quality and flow measurements within the same
period were obtained from the State Office for
Environmental  Protection LfU  (Landesamt  fir
Umweltschutz from Baden-Wirttemberg/Germany).

As an example, two layers of the Elsenz sub-basin are
shown: figure 3 displays the land use layer and figure 4
the livestock layers.

Soil Use

I High density urban area
Low density urban area

I Industry

[ Agricultural area

[ Grassland

[ Deciduous forest

Bl Coniferous forest

Livestock

[]0- 2509
[ 2510 - 10489

I 10490 - 20648
[ 20549 - 47852
I 47553 - 55688

Figure 4.- Livestock distribution in Elsenz sub-basin

2.4 GMDH Algorithm

We used the GMDH (Group Method of Handling Data) of
Ivakhnenko, which original version is described in Farlow
(1984), to model the relationship between nitrate and the
variables in the database. The model is self-organizing
and is based on the statistical learning networks



Kishi et al.

D. Fritsch, M. Englich & M. Sester, eds, '|APRS', Vol. 32/4, ISPRS Commission IV Symposium on GIS - Between Visions and Applications,
Stuttgart, Germany.

201

approach. It selects the set of variables automatically that
better represents the dependent variable through a set of
observations in an iterative process. Different data can be
used as input in form of a vector of independent variables
X, with n observations. Since the structure of the model is
based on the input data set, the choice of this set is a very
important step. The GMDH algorithm, either in its original
form or one of its variations, has been used to solve
problems in some areas as water quality, air pollution,
hydrology, meteorology and economy. Examples of
application in water quality are given in Miiller (1996),
Muller (1994), Tamura & Halfon (1980) and Duffy &
Franklin (1975).

The model assumes that the independent variable y can
be described by a polynomial combination of the m
variables x. Since the polynomial is unknown, the
algorithm starts computing the regression equation for the
simple relation:

y=A+Bx +Cx; + DX’ + EX” + FxX;

for each pair of variable (x;, x). Thus, a new set of m(m-
1)/2 variables is generated. The estimates of the
independent variable is then compared to the observed
values and the combinations with higher correlation values
are kept, the rest is discarded. The selected variables are
then used to replace the original ones and the process is
repeated until the error, given by the difference between
the observed and computed values, reaches a minimum,
which characterises the best polynomial for the model.
The philosophy of the algorithm is to selected the best
combinations of variables at each iteration and use them
to obtain a higher order polynomial for the next iteration.

Substituting the computed values it is possible to write the
polynomial in terms of the original variables x. The
polynomial of lvakhnenko is in the form:

m m m m m m
y=a+ D BX+ D GXX + DD dpX Xk
i=1 i=1 j=1 i=1 j=1 k=1
where:
a, b;, ¢jj, dig ... : parameters of the polynomial
m : number of independent variables
Xir Xjy Xy - : independent variables
y : dependent variable
3 RESULTS

The information stored in the database was used to
predict the nitrate concentration with the GMDH model. It
must be pointed out that the input variables must be
carefully selected, since they should have influence on the
modeled parameter in order to obtain a reasonable result.
For nitrate the following data were selected: the
percentage of each land use class, distance from each
soil use to the drainage network and rainfall. An input
vector was computed for each sub-basin, which describes
its characteristics.

32 water quality stations distributed all over the Neckar
river basin were selected and the above mentioned
parameters were computed. As a result, a vector for each
station was obtained, which stores the spatial index,
derived from the satellite imagery and DTM, and statistical

information. This vector constitutes the input for the water
quality model used to simulate nitrate concentration. Table
2 shows the summary of the input data.

Table 2.- Data for 32 study sub-basins.

Variable Minimum  Maximum
Area (km?2) 102 2213
% high density urban area 0 7
% low density urban area 2 20
% industry area 0 3
% agricultural area 13 61
% Grassland 10 39
% Deciduous forest 7 45
% Coniferous forest 2 45
Rainfall (mm annual) 773 1369
Distance of high density 390 870
urban area to drainage (m)
Distance of low density urban 390 900
area to drainage (m)
Distance of industry area to 450 1170
drainage (m)
Distance of agricultural area 660 1020
to drainage (m)
Distance of Grassland to 630 1200
drainage (m)
Distance of Deciduous forest 630 870
to drainage (m)
Distance of Coniferous forest 690 1170
to drainage (m)
Population 27496 962952
Livestock 5636 717997
Nitrate Concentration (mg/l) 3,67 16,44

The GMDH identified the most significant variables that
influence annually nitrate concentration:

e percentage of agricultural area and
e percentage of low density urban area

Figure 5 displays the comparison between the model
output and the observed values for 1993. A correlation
factor of 0.9 was found. These two most significant
variables identified by GMDH algorithm are, too, in
accordance with the commonly described sources of
nitrate. Moreover, as reported also in Beudert (1997), the
influence of rainfall was recognized as insignificant.
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Figure 5.- Observed and predicted nitrate concentration
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4 DISCUSSION

In this study we point out the importance of the use of
spatial distributed data in water quality analysis using GIS
together with a GMDH model. GIS proved to be a very
efficient tool to resume spatial data and generate inputs
for the model. The use of GIS for spatial analysis in water
quality is also reinforced by the fact that the amount of
available digital data is increasing. GIS speeds this
process and enables a more accurate description of the
basin.

Experiments made with GMDH and the computed data
showed that the model helps to identify the most
significant variables. The results enables a description of
water quality in terms of easy available spatial and
statistical data.

The spatial resolution of the raster data deserves special
attention, since it has strong influence on some
parameters, as slope, which may change according to
variations on the resolution.

Because of the nature of the model a high number of
iterations would provide a high order polynomial that best
fits the observed values. Nevertheless this solution may
not be optimal, because it is able to describe with high
accuracy just the input data set and not the general trend
of the basin.

The methodology was used to model nitrate, but new
simulations will be performed for other water quality
parameters, such as total phosphorus or heavy metals.
These parameters depend on sediment transport,
therefore, other model inputs should be added, according
to the involved processes, as erosion, runoff and sediment
tansport.
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