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ABSTRACT

In cartographic applications, area-based matching techniques are commonly used for stereo matching of low-resolution aerial images.
However, these techniques fail in matching high-resolution aerial images of urban areas because of relatively frequent and sharp depth
discontinuities and large occluded or textureless areas present in such images, as compared to low-resolution aerial images.
This paper presents a hierarchical correlation-based matching technique which fuses information from multiple image pairs and employs a
support-collection mechanism in the object space as well as a relaxation algorithm to resolve ambiguities, producing accurate and dense
disparity maps. The disambiguating power of the algorithm and the use of multiple pairs allow us to use very small correlation windows, so
that the computational complexity is kept small and boundary overreach problem is avoided. They also allow us not to use any threshold
on correlation values; as a result, very dense disparity maps can be obtained.

1 INTRODUCTION

Obtaining digital elevation models (DEM) from aerial images is
useful for a number of cartographic applications. The use of cor-
relation-based stereo in establishing DEMs is common and well-
studied. Such techniques are known to be successful in low-res-
olution images or in images of non-urban areas where the depth
changes smoothly and where there exists rich texture.

In this paper, we address correlation-based stereo correspondence
in the domain of high-resolution aerial images of urban areas, that
typically contain large textureless regions (e.g. roads and espe-
cially roofs which are of great importance), frequent sharp depth
discontinuities, and, large occlusions. The images on which we
develop and test the method presented here are 24-bit RGB aerial
images of West European industrial or urban zones with a ground
resolution of 8cm. The internal camera parameters are readily
available and external parameters can easily be determined using
standard calibration techniques.

This paper is organised as follows: In the following section, some
related work is summarised. In section 3, a hierarchical relaxation
algorithm, which calculates the disparity maps from multiple image
pairs simultaneously, is described. In section 4, some experimental
results are presented and, finally, the paper is concluded with a
discussion on results in section 5.

2 RELATED WORK

One of the ways to use more than two images in stereo reconstruc-
tion is to construct epipolar image pairs to obtain disparity maps
with conventional stereo techniques, and then, to merge the result-
ing matches in the object space. There is a rich literature towards
the integration of depth data from multiple sources, not necessar-
ily from stereo, but from shape-from-shading (Ferrie and Levine,
1987) or range images (Shum et al., 1994)(Higuchi et al., 1993).
An interesting work to merge disparity maps resulting from multiple
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stereo pairs is that of (Fua, 1997) where small patches (“oriented
particles”) are fitted to matches in 3-D object space to estimate
underlying surface.

Another way of using three or more images is to employ a corre-
lation-like similarity measure defined over all images involved. In
multibaseline stereo, the pixels in each image, corresponding to a
given pixel in the reference image and a given depth, can easily
be found. The sum of squared differences (SSD) within a window
around those pixels, which was first used by (Okutomi and Kanade,
1993) in this context, can be drawn as a function of depth. (Kang
and Szeliski, 1997) use SSD in panoramic images; (Park and In-
oue, 1997) use only two median of four differences obtained from
five cameras to overcome the problem of occlusion; (Scharstein
and Szeliski, 1996) use an adaptive support region instead of a
square window; and (Canu et al., 1995) use sum of normalised
correlations instead of SSD.

A third way is to project all possible matches from multiple pairs to
3-D, and then, to choose the true matches in object space. (Zitnick
and Webb, 1996) project matches from multiple cameras with re-
spect to a reference camera to 3-D and eliminate some of the false
matches by tracking each match, in all pairs, in increasing order of
baseline distance. So, a point can be matched only when it can
be seen from all cameras. The remaining 3-D points are grouped
into continuous surfaces, considering their depth differences in 3-
D and their pixel distance in 2-D. The most numerous groups are
assumed to correspond to true surfaces.

3 DESCRIPTION OF THE ALGORITHM

In the case of merging disparity maps from multiple stereo image
pairs, one does not benefit from the information in three or more
images during the matching process. But, some false matches
could be eliminated or more matches could be obtained in that
early phase. The use of correlation-like measures defined on three
or more images are more powerful in that sense, however, a match
which is very clear in one pair of images (i.e., a very sharp and
large peak in the correlation signal) can be lost because of noise,
occlusion or high disparity gradient. Besides, when all cameras are
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not on the same baseline, it is difficult to calculate such similarity
measures. For these reasons, we choose to calculate the corre-
lations pairwise and mark all maxima as candidates. Then, unlike
(Zitnick and Webb, 1996), through a mechanism of support col-
lection from candidates from all pairs, true matches are selected.
In our method, a point which can not be seen from all views, or
surfaces which have small projections on the images can also be
matched.

In our image database, the images are taken from arbitrary points
of view, and therefore, it is not possible to bring three or more im-
ages into a unique epipolar geometry. So the images are aligned
pairwise. All points from all image pairs which are identified as
peaks with a positive value in the correlation space are accepted
as candidate matches and projected into the object space where a
support value for each candidate match is calculated. A confidence
value in the range [-1,1] which is equal to the correlation value at
the initialisation, is also kept with each match. Using a relaxation
algorithm some matches are accepted as true matches and some
are rejected. By this way, we never create an arbitrary dominant
eye, i.e., a reference camera, throughout the stereo reconstruction
process.

3.1 Hierarchy

The image pyramid on which we apply the hierarchical algorithm is
obtained by low-pass filtering followed by sub-sampling, as usual.
The matches obtained at a certain level constrain the solution in the
next finer level. This coarse-to-fine approach, which is commonly
used in computer vision problems, has one main disadvantage:
an error at a level is spread up to all finer levels. In stereo case,
usual practice is to limit the possible disparity range of a pixel, cor-
responding to a match from the lower level, around the disparity
value of that match. In this case, if the error is very large in the
lower level, we can never reach the true disparity in the finest level.
To avoid this problem, the following method is used for constrain-
ing the solution in the upper level: for each match from the lower
level a sphere around this match is included in our search volume.
The intersection of all these spheres defines the volume in which
we search for matches. Therefore, if a true match has an accepted
match in his 3D-neighbourhood in the lower level, it is considered
as a candidate.

3.2 Algorithm

In Figure 1, the algorithm is depicted schematically at an arbitrary
level of the hierarchy. In principle, any number of pairs obtained
from any number of images can be used. For the sake of simplic-
ity, the figure shows only two pairs obtained from three images.
First, the correlations across points from epipolar pairs, which cor-
respond to the search space defined by the lower level and by the
possible disparity range, are calculated. For the lowest level, only
the disparity range is used. The correlations which are local max-
ima and which have a positive value are considered as candidate
matches. Then, all the matches are projected to the object space
so that a support value, si, can be calculated. There, by the re-
laxation algorithm, some of the matches are accepted and some
are discarded. Each match, either candidate or accepted, is de-

fined by a 5-tuple Pi
def
� �xi� yi� zi� ci� li� where x, y and z denote

the 3-D coordinates of the match in the object space, c and l de-
note the confidence value and the label of the match, respectively.
Confidence value is defined simply as the normalised correlation
value (in the range ���� ��) for candidates and as unity for accepted
matches. The label of the match is its origin, i.e., the index of the
pair it is generated from.
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Figure 1: The Algorithm in an Intermediate Level.

3.3 Relaxation

The relaxation algorithm to choose true matches among Pi� i �
�� � � � � N at any level is as follows:

set thigh to a very high value
set tlow to a very low value
do

for i=1 to N

calculate si, support for Pi
If si � thigh

label the match as accepted
ci �� �
reject any candidate which is from the same

epipolar image pair and
which violates the ordering constraint

If si � tlow
reject Pi from the pool of matches

decrease thigh
increase tlow

while ( thigh � tlow )
end

During this relaxation, ambiguities are expected to be resolved in
several ways:

� Since accepted matches vote more strongly for their neigh-
bours, the support values of good candidates are likely to in-
crease.

� Accepted matches cause some of the false candidates to be
discarded via the ordering constraint. False matches with very
small support are also rejected. As a result, the support value
of remaining false matches have a tendency to decrease.

3.4 Correlation

In correlation-based methods, the size of the correlation window
is the result of an important trade-off. When the disparity gra-
dient is small and there is no depth discontinuity within the win-
dow, large windows perform well with the price of high computa-
tional complexity. But, in our case, there exist sharp discontinuities
which cause boundary overreach and we may end up with areas
(e.g. roofs) significantly larger than their real size. To avoid bound-
ary overreach and other problems caused by depth discontinuities
and to reduce the computational complexity considerably, we have
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Figure 2: W �x� for three values of b where r � �.

used normalised correlations of size 5�5. Using windows of such
small size, in turn, makes the process sensitive to noise, but our
algorithm can eliminate false matches caused by noise. We also
benefit from the colour information in 3-band images by using the
median of red, green and blue band correlations for each pixel as
suggested by (Roux et al., 1997).

3.5 Support Function

The use of a support function is known to be powerful in resolv-
ing ambiguities in stereo matching. All cooperative algorithms use
a function of the neighbourhood to encourage or discourage a
match. A support function is defined so as to allow only positive
contributions from the neighbours. (Prazdny, 1985) states that dis-
similar matches should not inhibit each other “because they poten-
tially carry information about different surfaces”. Since we want to
cope with surfaces at different heights, we have chosen the same
approach. Prazdny uses Gaussian distribution function to calcu-
late the support to a match from the neighbourhood. This support
function implicitly implies a disparity gradient limit and favours fron-
toparallel surfaces. Our support function is defined in a different
manner due to the nature of the problem.

In the choice of the support function one should consider the fact
that the points in 3-D are viewed from almost arbitrary angles in
each image and in the urban area there exist surfaces which are
vertical as well as horizontal. Therefore, instead of a function which
favours horizontal surfaces, we have chosen a spherically symmet-
rical support function such that the support to ith candidate is

si �

NX
k��

ckW

�p
�xi � xk�� � �yi � yk�� � �zi � zk��

�

where N is the total number of matches (either candidate or ac-
cepted) and W ��� is a monotonically decreasing function of � which
determines the radius of the effective neighbourhood and defined
by the sigmoid function

W ��� �
�

� � eb���r�
�

Here, r is the radius of the effective neighbourhood which votes
for the match and b determines how fast the transition is (see Fig-
ure 2).

3.6 Simplifying Assumptions

In practice, following simplifying assumptions are made because of
the limitations on memory and computation time:

Limit on Number of Peaks: We do not keep all the peaks in the
correlation space but only the two greatest peaks in the range of
possible disparities for each pixel in each image. This is a rea-
sonable assumption, because, since the disparity search space is

constrained by the lower level, there exist hardly two peaks in that
range. If the true disparity is, although very unlikely, at the third or
later peak, we miss it.

3-D Distance Approximation: Keeping the real-world coordinates of
each candidate match consumes too much memory. Instead, we
try to estimate the Euclidean distance between candidates using
directly their image coordinates and disparities. Let two matches
from the same pair be �i�� j�� d�� and �i�� j�� d�� where i and j are
row and column numbers for the first image of the pair, respectively,
and d is the disparity. We want to express the distance between
these two matches in terms of �i� � i��, �j� � j�� and �d� � d��
and keep this function in a look-up table of three variables. After
a series of geometric calculations and assumptions (see appendix
A), we reach the following simple formula:

d��� �

sh

p
�i� � i��� � �j� � j��� � �j� � j���d� � d�� � a��d� � d���

where sh and a� are determined by the geometry. Note that the
function is symmetric with respect to images in a pair, i.e., the dis-
tance between the corresponding matches �i�� j� � d���d�� and
�i�� j�� d���d�� in the other image of the pair is the same as that
of the first one. Thus, a dominant eye is not created. Although
the algorithm is not sensitive to small variations in the distance
function, the formula is quite accurate (See figure 3). Besides, by
changing the parameter a, one can favour vertical or horizontal
surfaces. In order to calculate the distance between matches from
different pairs, one of the matches is transformed to the coordinate
system of the other, since internal and external camera parameters
and the transformations for the epipolar alignment are all known.

0 500 1000 1500 2000
0

500

1000

1500

2000

x (mm)

z 
(m

m
)

Figure 3: Solid line: A circle of diameter 1000 mm in the object
space. Circles: A group of points which are at 1000 mm distance
to the centre according to the approximate formula. Crosses: The
same points when the parameter a is multiplied by �. The param-
eters are those calculated for the second image pair for which the
results are presented in section 4. The central point corresponds
to an arbitrary match.

Support from only 2-D Neighbourhood: To avoid the computa-
tionally expensive process of calculating the support from all N
matches, the support calculation is constrained to the matches at
the pixel locations within a rectangular 2-D neighbourhood of the
matching pixel large enough to cover all the matches in the effec-
tive neighbourhood.

3.7 Computational Complexity

Since the number of candidate matches at any pixel is limited to
two, N is proportional to the size of the image. At each iteration,
the support value is calculated N times. The number of matches
in the search neighbourhood is independent from N , so the com-
putational complexity of the relaxation algorithm is proportional to
N , hence, to the image size.
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Figure 4: One of the three views of the same area (1024�1024).
Courtesy of Eurosense.

4 RESULTS

The algorithm described is tested on high-resolution (8cm�8cm)
aerial colour images. Figure 4 depicts one of the three images of
the same area on which we test our algorithm and Figure 5 shows
the result of 9�9 correlation followed by thresholding on one of the
stereo pairs, in a simple three level hierarchical architecture.

Figure 6 displays the final result of the new algorithm with three
levels and six iterations over the main loop where two pairs were
used and Figure 7 is the 3-D rendering of this result. Table 1 and
Table 2 present the schedule used for relaxation and the number
of candidates before and after relaxation, respectively. The radius
of sphere, r, equals ���mm and the sigmoid parameter, b, equals
������mm�� in the finest level. The same schedule is used at all
levels.

iteration tmax (%) tmin (%)
1 55 4
2 45 5
3 35 6
4 25 8
5 15 10
6 12 12

Table 1: The schedule for relaxation. The threshold values, which
are chosen such that they converge at the last iteration, are given
as percentages of the maximum possible support value.

level size total number
of candidates

number of
accepted can-
didates

%

1 256x256 125038 48582 74.1
2 512x512 486014 177109 67.6
3 1024x1024 1916831 775984 74.0

Table 2: The number of candidates before and after relaxation be-
longing to the second pair, and ratio of matched pixels to the total
number of pixels, as a function of the level in the pyramid.

To demonstrate the disambiguating power of relaxation, we show,
in Figure 9, the results of the algorithm without relaxation step, i.e.,
the results obtained by thresholding the support values resulting
from two pairs. Note that the uniqueness and ordering constraints
are sometimes violated in this disparity map.

Figure 5: Disparity map corresponding to Figure 4 obtained by
9�9 correlation with three levels of hierarchy and with a threshold
of ���� using two views only (i.e., one pair).

Figure 8 is the disparity map obtained by using the proposed algo-
rithm with only one pair of images. Increasing the number of pairs
results in denser and more accurate maps.

5 CONCLUSION

In this work, we have proposed an algorithm which combines the
information from multiple image pairs and which eliminates false
matches in correlation-based stereo matching. We have demon-
strated the efficiency of the algorithm qualitatively on real images.
Since no threshold is used on the correlation values and since a
match appearing in any pair has a chance to survive, very dense
disparity maps are obtained. By means of support calculation from
multiple pairs in object space, the fusion is realised in an intuitive
way. Combining support collection with relaxation resulted in a
robust algorithm producing accurate matches. The algorithm can
be extended in several directions: an estimation of the surface di-
rection can be used to modify the shape of the support function,
the colour of the matching pixels may contribute to the calcula-
tion of the support, or matches between any kind of features (e.g.
corners, segments) can be projected on the same space and can
collect support from the matches.
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Figure 6: Final result of the proposed algorithm (74% of the pixels
are assigned a disparity value).

Figure 7: 3D rendering of the final result.

Figure 8: Disparity map with two views only.

Figure 9: Disparity map without relaxation, but with two pairs.
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A 3D DISTANCE APPROXIMATION

Consider the epipolar camera geometry shown in Figure 10.

The coordinates of object point, in terms of �Xleft� Zleft�, are:

x � �
kxl

�xr � xl�
z �

kf

�xr � xl�
�

Since xl � aj and xr � a�j � d� (where j is the column number
in the left image, a is the pixel size and d is the disparity),

x�d� j� � �
kj

d
z�d� j� �

kf

ad
�

We assume that d � �d��r� d��r�, i.e., all objects are in a certain
depth range. We open x�d� j� to a Taylor series around �d�� j��
where j� � �d��� (or equivalently, x � k��) and ignore 2nd or
higher order terms.

x�d� j� � x�d�� j�� � �d� d��
�x
�d

�d� j���� d � d�
j � j�

� �j � j��
�x
�j

�d� j���� d � d�
j � j�

-f -f

(x, z)

Zleft Z

Right CameraLeft Camera
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right

rightX

k

x xl r Image Plane

Figure 10: The Camera Geometry.

or

x�d� j� �
k

�
� �d� d��

k

�d�
� �j � j��

k

d�
�

So, the distance in x-coordinate between the two points in object
space, determined by �j�� d�� and �j�� d�� is

x� � x� � ��d� � d��
k

�d�
� �j� � j��

k

d�
�

Similarly,

z�d� j� �
kf

ad�
� �d � d��

kf

ad�
�

and so, the distance in z-coordinate is

z� � z� � ��d� � d��
kf

ad�
�

�

Then, the distance between the points is

dist �

sh
p

a��d� � d��� � �j� � j��� � �d� � d���j� � j��

where

sh �
k

d�

and

a� �
�

�
�

f�

a�d�
�

�
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