
Hardo Müller 1

OBJECT-ORIENTED MODELING FOR THE EXTRACTION OF GEOMETRY, TEXTURE AND REFLECTANCE
FROM DIGITAL IMAGES

Hardo Müller
Institut für Photogrammetrie

Universität Bonn
Nußallee 15, 53115 Bonn, Germany

Ph.: +49-228-73-2721, Fax: +49-228-73-2712
e-mail: hardo@ipb.uni-bonn.de

KEY WORDS: Semi-Automatic Extraction System, CORBA, JavaBeans, GIS, CSG

ABSTRACT

A semi-automatic system for extracting topographic features is being migrated to an object-oriented design for better maintainability. For
that purpose an object-oriented model of the extracted objects and the extraction methods is required. Moreover an appropriate software
component model for the exchange with other systems is needed. We have modeled a class hierarchy for objects, that can be semi-
automatically extracted from digital images. These objects are characterized by geometric, textural and reflectance properties. We have
classified the extraction methods and modeled the message transfer of an interactive extraction method. The component technologies
CORBA and JavaBeansTM were used to make the extracted objects and system components available for other systems. We found out
that an access to the objects of the Semi-Automatic System by operation calls allows a more flexible data transfer and control of the system
than standard file transfer. Therefore Geographic Information Systems (GIS) should support appropriate software component models to
co-operate optimally with interactive or semi-automatic feature extraction systems.

1 INTRODUCTION

A semi-automatic system for the extraction of buildings from digi-
tal images has been developed at the Institute of Photogrammetry,
University of Bonn since 1993. The operator uses the system in a
mono-scopic mode supported by interactive and automatic extrac-
tion methods. This system has been presented in several earlier
publications (Lang and Schickler, 1993, Lang and Förstner, 1996,
Englert and Gülch, 1996, Gülch and Müller, 1997, Müller, 1997,
Müller, 1998).

The originally procedural structured software has been migrated to
an object-oriented design. Thereby we have obtained an essen-
tially higher maintainability of the software. In contrast to simple
data structures we are now able to produce objects as output. We
get a substantially higher level of information from these objects,
because the informations are transferred by operation calls, which
is not possible with the classical method of reading data from a
stream.

For the object-oriented system design we need an object-oriented
model of the extracted objects and the extraction methods. Ob-
jects, extracted by the semi-automatic system, are characterized
by geometric and textural information. Texture, extracted from
digital images, depends on lighting conditions, camera properties
and image processing influences. For a more object-specific de-
scription we need to model the reflectance properties of an ob-
ject. Extraction methods as well as external components have re-
quirements on the object-oriented model of the extracted objects.
E. g. most of the extraction methods need a parametric descrip-
tion instead of a polyhedral one and some Virtual Reality Model-
ing Language (VRML) browsers can handle only rectified texture.
The exchange of messages between method-specific objects and
platform-specific objects is of importance for the object-oriented
model of the extraction methods. This concerns especially interac-
tive methods. For flexible applicability we need a clear separation
of these two object groups. Moreover we need techniques to pass
the extracted objects to external components. Thereby we have to
consider existing standards. The object-oriented model of the sys-
tem has to be kept flexible, that an adaption to future standards can
be easily performed. In this context the problem of object-oriented
modeling is on the one hand to model the natural properties of
the objects as real as possible and on the other hand to consider

implementation aspects and platform independence for a flexible
reuse.

This paper presents the object-oriented model of the extracted ob-
jects, which are characterized by geometry, texture and reflectance
properties (cf. section 2). For a graphic representation of our dy-
namic and static object-model, we use the Unified Modeling Lan-
guage (UML), which is described in (Rat, 1997) and has adopted
elements of the OMT (Rumbaugh et al., 1991) and the Booch-
method (Booch, 1994). A classification of the extraction meth-
ods and an object-oriented model of the message transfer in an
interactive method is depicted in section 3. The application of
the object-transfer techniques CORBA, JavaTM Object Serialization
and JavaBeansTM for semi-automatic object extraction is described
in section 4. In section 5 some examples are presented. Finally,
we discuss in section 6 the characteristics, which a GIS should
have, in order to co-operate with semi-automatic object extraction.

2 EXTRACTED OBJECTS

The objects, which are extracted from digital images, are attached
with geometric- and textural information. The textural information
is taken from the reflectance properties of the material. Our first
task is to design a class structure, which represents an appropriate
description of the geometric, textural and reflectance information.

2.1 Geometry

Points, Edges and Faces The basic primitives of our geometric
description are points, edges and faces. So we model a class
structure, consisting of these primitives. This canonical model links
points, edges and faces by pairs with bidirectional associations.
Figure 1 shows a class digram of this most intuitive way designing
geometric primitives.

Polyhedral Models The above mentioned primitives can be
composed to simple polyhedral models. With polyhedral models
we are able to describe the geometry of topographic objects like
buildings. The class structure for a polyhedral model is shown in
figure 2.

D. Fritsch, M. Englich & M. Sester, eds, 'IAPRS', Vol. 32/4, ISPRS Commission IV Symposium on GIS - Between Visions and Applications,
Stuttgart, Germany.



2 Hardo Müller

*
3..*

* *

2
3..*

Point Edge

Face

Figure 1: A simple model for geometric primitives like points, edges
and faces. The association lines between the classes represent
bidirectional neighborhood relations. They are attached with multi-
plicties at their end (Numbers or *-symbol for N -times multiplicity).

Face

Point

PolyhedralModel

Edge

Figure 2: Class structure for a simple polyhedral model. We
model a PolyhedralModel-class as a composition of Point-, Edge-
and Face-objects, whereas the operations of the PolyhedralModel-
class are responsible for the generation of Edge-objects from given
faces and points. The diamond symbols represent aggregation as-
sociations. Multiplicity is omitted for clearness.

Most of CAD and virtual reality applications use polyhedral models
for geometric description. For the interactive extraction of geomet-
ric objects from digital images, the use of simple polyhedral models
is disadvantageous. The problem is the large number of parame-
ters, which are needed to describe one model. E. g. a polyhedral
model of a saddleback building consists of 10 3D-Points, 15 Edges
and 7 Faces. This means, that alone 30 Parameters are needed
to describe the geometry of the model in a polyhedral mode (cf.
Figure 3).

7

8

6

4

1

9

10
5

3

2

Figure 3: Saddleback building as a polyhedral model. Since each
of the 10 corner points is specified by 3 coordinate values, 30 pa-
rameters are necessary to describe the geometry in this represen-
tation. Parameterization therefore is useful.

Parametric Models For the semi-automatic extraction, we need
a model, which gets along with fewer parameters. A parametric
model fulfills this request. These models can effectively be used
for buildings with flat, saddleback or hip roof, requiring 3, 4 or 5
parameters for specifying the form. The coordinates of the corner
points are calculated by a design matrix, which is given for each
model type. This process is described in more detail in (Lang and
Förstner, 1996) and (Müller, 1998). The class structure of these
classes is shown in figure 4. Every modification of the model pa-
rameters causes an update of the point coordinates.

CSG models Complex buildings are not describable by a few
parameters. Therefore we use the Constructive Solid Geometry
(CSG) principle for a combination of parametric models (Hoffmann,
1989). The CSG model is a tree structure, which consists of a com-
bination of solid primitives by the logical operations union, intersec-
tion and difference (Englert and Gülch, 1996, Müller, 1998). Fig-

designMatrix

geometry type

<<interface>>
PolyhedralRepresentable

PolyhedralModel

ParametricModel

Matrix

ModelType

Figure 4: Class structure for a parametric model. The
ParametricModel-class contains a geometry-object, which is an
instance of the PolyhedralModel-class, and it is associated to a
type-object, which is an instance of the ModelType-class. The op-
erations of the ParametricModel-class are responsible for the state
of the geometry-object, which must be consistent with actual pa-
rameter values. The point coordinates and topological structure is
calculated by the operations of the ModelType-class, which uses
the designMatrix-object in the manner as described in Lang and
Förstner, 1996. Since parametric models can be represented in a
polyhedral manner, we have designed a PolyhedralRepresentable-
interface, which is implemented by the PolyhedralModel- and
ParametricModel-class.

ure 5 depicts our class-structure for CSG models. This class struc-
ture is designed similar to the Composite design pattern, which is
intended to model tree-structures (Gamma et al., 1995).

CSGComponent
2

1 root

CSGTree

OperationParametricModel

Figure 5: Class structure of a CSG tree. The CSGComponent-
class, which is the base class of the ParametricModel-class and
Operation-class, represents the node of a CSG tree. The root com-
ponent of the tree is a part of the CSGTree-class.

2.2 Texture

We also extract textural information. This information is needed
e. g. in virtual reality applications for a more realistic view. For this
purpose we have to identify common representations for textural
information. VRML-files e. g. need the model points to be declared
in texture coordinates and the corresponding images for the texture
data (VRM, 1997). Texture coordinates are 2D-coordinates related
to the texture data. Figure 6 shows, how the texture coordinates of
a face are related to the object space.

1

1
tx

ty

0

Figure 6: Texture coordinates �tx� ty� on a roof face of a hip roof
building. This relation is represented by a homogeneous 4x4 ma-
trix.

D. Fritsch, M. Englich & M. Sester, eds, 'IAPRS', Vol. 32/4, ISPRS Commission IV Symposium on GIS - Between Visions and Applications,
Stuttgart, Germany.



Hardo Müller 3

0

ty

tx

1

1

Figure 7: Raster of texture elements on a front face of a
saddleback-roof.

After the raster of texture elements is specified as shown in fig-
ure 7, the texture extraction process can start. For each texture
element, the texture coordinate is converted first to an object co-
ordinate and second to an image coordinate using the orientation
of the image. From this image position the color or grey value is
taken. We assign this rectification process to the extraction of tex-
ture, because not all visualization tools can handle distorted texture
data.

Since we want to extract texture from several images, we need a
criterion to decide, which of the images shall be taken for texture
extraction. This is done by the calculation of a weight for each
texture element. The weight becomes higher, if the area of the
projected texture element in the image increases and the angle �

between view direction and surface normal decreases. The weight
is calculated as following:

w �

�
A
�
�� ��

�

�k
� � � �

�

� � � � �

�

where

w � weight,

A � area of the projected texture element,

� � angle between surface normal and view direction,

k � factor of � influence.

For preferring a perpendicular view set k high.

If another image is extracted, the weight is compared with the pre-
viously calculated weight, and the texture element gets the data
from the new image, if the weight is higher.

The class structure of a face with mapped texture is shown in fig-
ure 8. This design enables a straightforward access to rectified
texture for external objects, like a VRML file generators, visualiza-
tion tools etc.

textureWeight
textureData

TextureFace

Face

objectToTexture

textureToObject

ImageSource
<<interface>>

extract(image)

Transform3D

Figure 8: Class structure of a face attached with texture. The
textural information is modeled by a TextureFace-class, which is
inherited from the Face-class. The TextureFace-class contains
Transform3D-objects which perform the conversion between object
coordinates and texture coordinates by an affine transformation.
For the texture extraction an oriented image is needed, which im-
plements the ImageSource-interface. Thus, the extract-operation
uses the ImageSource-interface.

2.3 Reflectance

To get object-specific properties from the image data, we have
to model the reflection behavior of surfaces. In general the re-
flectance of a surface can be expressed by the Bidirectional Re-
flectance Distribution Function (BRDF):

fr�x��i��o� �
dLo�x��o�

Li�x��i� cos�id�i

where x is the position on the surface, �i � ��i� �i� is the direc-
tion from which the light comes in, �o � ��o� �o� is the direction
in which the light is reflected and measured, dLo�x��o� is the dif-
ferential amount of radiance that is reflected at point x in the out-
going direction �o, Li�x��i� is the amount of radiance coming in
at point x along direction �i through d�i, cos�i is the cosine of
the angle between �i and the surface normal at point x, and d�i
is a differential angle around �i.

The BRDF is the ratio of the radiance in the direction of the re-
flected bean to the irradiance caused by the entrance bean. De-
pending on the physical model there are several possibilities to
express the BRDF. For example the Lambertian BRDF for diffuse
reflection

fr�x��i��o� �
kd

�

or the modified Phong model with a diffuse and a specular part
(Lafortune and Willems, 1994)

fr�x��i��o� � kd
�

�
� ks

n� �

��
cosn �

or the BRDF in terms of surface scattering modes (Koenderink and
vanDoorn, 1996). This model allows to represent parametrically a
complex BRDF.

fr�x��i��o� �
X
nml

anmlS
l
nm��i� �o� j�i � �oj�

where � is the angle between perfect specular reflective direction
and the outgoing direction, kd is the diffuse reflectivity, ks is the
specular reflectivity, Slnm��i� �o� j�i��oj� are the basis functions
for the surface scattering modes, and anml are the coefficients for
the surface scattering modes.

The class structure for reflectance properties is shown in figure 9.
In this design we use the polymorphism principle to express the ab-
straction of the BRDF. A tool, which extracts reflectance, has to use
at least one of the concrete models expressed by the subclasses of
the BRDF-class, because abstract classes cannot be instantiated.
For this design we need a persistence mechanism, which is able
to keep the abstraction principle at the one hand and to restore the
BRDF-object with the originally used subclass at the other hand.
We will discuss in section 4 which techniques are nowadays avail-
able to fulfill this request.

ModifiedPhongLambert SurfaceScatteringModes

Face

BRDF
{abstract}

Figure 9: Class structure for the modeling of reflectance properties
with several BRDF models. The Bidirectional Reflection Distribu-
tion Function is modeled by an abstract class BRDF from which
the BRDF models are inherited. The BRDF-class itself is part of
the Face-class.

D. Fritsch, M. Englich & M. Sester, eds, 'IAPRS', Vol. 32/4, ISPRS Commission IV Symposium on GIS - Between Visions and Applications,
Stuttgart, Germany.



4 Hardo Müller

Method Automatic Interactive Modifies Uses Durable
Model selection X Parametric model 1 Image
Parameter adaption X Parametric model �� � Images, Orientation X
Ground point measurement X X Parametric model � � Images, Orientation
Gable point measurement X Parametric model � � Images, Orientation
RANSAC technique X Parametric model Extracted edges, Orientation
Fine adjustment X Parametric model Extracted edges, Orientation
CSG construction X CSG tree 1 Image X
Gluing X Parametric model CSG tree X
Texture extraction X Polyhedral model � � Image, Orientation

Table 1: Classification of extraction methods. Some methods are durable, which means, that the method manipulates the model at multiple
times during a sequence of interactions.

3 EXTRACTION METHODS

The Semi-Automatic Extraction System contains several extraction
methods. For the object-oriented model of the different methods,
we need a classification of the significant properties. Table 1 shows
the different extraction methods and the properties, which are rel-
evant for the object-oriented model. The methods are interactive,
automatic or semi-automatic. They modify different kinds of ob-
jects and need different input data. Some methods are durable,
which means that they manipulate an object at several times. We
have to deal with a more complex message transfer than in case of
a simple operation call. The methods are triggered by messages,
which they get e. g. from a graphical user interface. The main
features of the particular methods are listed below:

Model selection The first interaction step of model extraction is
to select one of the parametric model types from a toolbar.
This type is set to the parametric model.

Parameter adaption The adaptation of the parameters is done
in a sequence of steps, each specifying one or two parame-
ters of the model. The parameters are changed depending
on a sequence of two points specified by mouse clicks and in
dependence of the type of primitive. This method is charac-
terized by a high number of message transfers between the
platform-specific Graphical User Interface (GUI) and the ex-
traction system. We will describe the object-model of this in-
teraction sequence below.

Ground point measurement The operator selects one point on
the ground nearby the building, and the absolute height of
the ground is computed automatically. For this purpose we
use cross-correlation on the grey values of the images with an
epipolar search strategy. This method consists of interactive
and automatic elements. (Müller, 1997).

Gable point measurement The absolute height of the building is
performed by matching a central point on a gable roof in the
same manner as the ground point measurement. The differ-
ence is, that the selection of the point can be done automati-
cally.

RANSAC technique RANdom SAmple Consensus can be used
as a powerful technique to determine a best fit of building
parameters from a given set of image edges (Fischler and
Bolles, 1981). A more detailed description about applying this
technique within this system can be found in (Läbe and Gülch,
1998). To perform this method, extracted line segments are
needed.

Fine adjustment An automatic fine adjustment by a robust spatial
resection, using all line segments in all images provides an
optimal fit of the selected model to the image data. As well as
for RANSAC extracted line segments are needed. (Lang and
Schickler, 1993, Läbe and Ellenbeck, 1996).

CSG construction The CSG tree is composed by an interactive
selection of primitives and operations. This method manipu-
lates the topology of a CSG tree.

Gluing of building parts Describing a building by the combina-
tion of primitives or combined primitives requires a precise
“docking” of the primitives. This docking is supported by
matching and gluing facilities. The former allows to match at
least two edges of different primitives and the latter matches
and glues exactly two faces of different primitives together
(Englert and Gülch, 1996). This method uses the the pre-
viously extracted primitives of a CSG tree. It activates itself
during the interactive parameter adaption.

Texture extraction Texture extraction depends not on the para-
metric description of a model. It can be performed on a poly-
hedral model. The technique of texture extraction has already
been described in section 2.2.

The object-oriented modeling of the interaction process is shown
by a sequence diagram in figure 10. We can divide the participat-
ing objects into three groups: Platform specific objects, method
specific objects and the extracted objects. The separation of
platform specific objects simplifies the integration into other sys-
tems. Method specific objects contain the actual extraction pro-
cess. Since they are platform independent, they can be used in
several environments. The interactive adaption method needs to
modify the GUI at several times. To keep the method implementa-
tion platform independent, we use an observer object for message
transfer. This object has a platform independent interface and it is
implemented with platform specific operations to control the GUI.
The extracted objects are designed independent of the extraction
method. Therefore we can apply anytime new extraction methods
on these objects without redesigning their object-model.

4 OBJECT EXCHANGE

The extracted objects have to be ported to other systems or end-
user applications. During this process, the object-oriented model
should not get lost. This means that particularly the operations
and abstractions, including data hiding, should be preserved. If
one simply writes the attributes of an object to a file, the reader of
this file does not know anything about the operations of this object.
It is not possible to store an abstract class in this manner. We use
actually three techniques which help to avoid this problem.

Application Programming Interface (API) The System can be
extended or integrated within another application by using its API.
The models and system controls are accessible by C++-classes.
Application developers can use the class library to extend the sys-
tem or to integrate it into another application.

D. Fritsch, M. Englich & M. Sester, eds, 'IAPRS', Vol. 32/4, ISPRS Commission IV Symposium on GIS - Between Visions and Applications,
Stuttgart, Germany.



Hardo Müller 5

[button == RIGHT] activate(position)

releaseButton

dragMouse(position,button)

pressButton(position,button)

[button == LEFT] selectFixedPoint(position)

ready

drag(position,mode)

redraw

{extracted object}{Platform specific objects} {Extraction method specific objects}

pressButton(position,button)

automationTool

setParameters(modifiedParameters)

parameterChanged

selectDraggedPoint(position)
getNearestPoint(position)

fixedPoint

changeInteraction
fixedPointSelected

getNearestPoint(position)

changeInteraction

changeInteraction
idle

parameterChanged

update

draggedPoint
draggedPointSelected

redraw

setParameters(modifiedParameters)

Operator parametricModelobserver parameterAdaptiongui projectedModel

Figure 10: Sequence diagram of the interaction process. This diagram represents a set of messages among objects. The objects are
represented by boxes at the top with vertical life-lines below. After the operator has pressed a button, the gui-object decides either to
activate an automation tool or to start the interactive parameter adaption. The automationTool-object represents one or more of the
automatic methods, which are listed in table 1. It modifies the parametricModel-object and sends a message to the observer-object. This
object has a platform independent interface and is responsible for updating platform dependent objects, like the gui-object. In case of
interactive parameter adaption the operator selects one corner point to be kept fixed. This is performed by sending a selectFixedPoint-
message to the parameterAdaption-object. The parameterAdaption-object gets the nearest point of the cursor position from the projected
model and sends the fixedPointSelected-message to the observer-object. The observer-object changes hereon the interaction mode of
the gui-object, because the event processing of the next pressButton-event is changed. When the operator presses next time a button,
another corner point is taken to be dragged. The message transfer is in the same manner as in case of the fixed point. Now the operator
can drag the cursor, which affects that the gui-object sends the drag-message to the parameterAdaption-object. New model parameters
are calculated and the gui-object receives a redraw-message. When the operator releases the button, the interactive parameter adaption
is done, and the gui-object changes to the entry state.

D. Fritsch, M. Englich & M. Sester, eds, 'IAPRS', Vol. 32/4, ISPRS Commission IV Symposium on GIS - Between Visions and Applications,
Stuttgart, Germany.



6 Hardo Müller

CORBA The Common Object Request Broker Architecture
makes the operations of an object available for other objects on
different systems. The object operations are available over system
boundaries on different computers at different Internet locations,
and they are implementable in different programming languages.
A more detailed description about CORBA can be found in (Obj,
1996).

We made the interface of the Semi-Automatic Extraction System
available by the CORBA mechanism. The interfaces can be ac-
cessed e. g. by a visible JavaBeanTM, which is responsible for visu-
alization and receiving mouse events (cf. figure 11). A JavaBeanTM

is intended to be composed into applications by end users (Sun,
1997).

Semiautomatic System

controller

ObjectExtractionBean

<<JavaBean>>

CORBA Mechanism

Interfaces specified by OMG-IDL

Message transfer by IIOP

model

Figure 11: Component diagram of the semi-automatic extraction
system implemented as a CORBA server, which is accessed by
a JavaBeanTM. The JavaBeanTM gets information for visualization
from the model-interface and sends mouse events to the controller-
interface. The signature of the interface-operations are specified by
the OMG Interface Definition Language (OMG-IDL) and the mes-
sages are transferred by the Internet Inter-ORB Protocol (IIOP).

JavaTM Object Serialization The JavaTM object serialization
mechanism is intended to serialize complete objects for persis-
tence. The objects and all their aggregates are serialized including
abstract references. We have applied this technique on a model
with a reference to an abstract BRDF-object as described in sec-
tion 2.3. Thus it is possible to store the abstract BRDF description
in files and other applications are able to reconstruct the models
and their reflectance behavior without knowing anything about the
used BRDF model.

5 EXAMPLES

Figure 12 shows the complete Graphical User Interface of the
Semi-Automatic Building Extraction System, whereas figure 13
shows a part the Semi-Automatic Building Extraction System
loaded as JavaBean in the JavaTM-BeanBox, which is intended
as an example for application development with JavaBeans. Fig-
ures 14-16 show a texture extraction example. The building model
is attached with texture from two aerial images (cf. figure 14) and
one close range image (cf. figure 15).

6 DISCUSSION

The Semi-Automatic System is intended to produce objects, which
can be used in Geographic Information Systems. Objects repre-
sent a more complex kind of information than simple data. They
are attached with operations, which are able to describe behavior
and rules. Further, abstract concepts can be described by objects.
Simple data consist only of numbers and strings in contrast to ob-
jects. It is difficult to model complex information in simple data
structures.

We have depicted different ways of making objects accessible for
other systems. The Semi-Automatic System is equipped with a

C++-API, a CORBA-interface and we have a rudimentary imple-
mentation of serializable JavaTM objects. We are in a position to
extract semi-automatically complex objects by keeping the object-
oriented modeling. In this context the standardization of GIS-
objects is of special interest. The Open GIS Consortium, Inc
has recently released a Simple Features Specification for CORBA,
which includes basically 2D geometry interfaces (Ope, 1998). This
signifies, that we have to keep attention to future standardization
developments with regard to 3D objects.

In section 3 we have specified several extraction methods, which
are implemented within the Semi-Automatic Building Extraction
System. In (Müller, 1997) we have presented a design pattern for
the object-oriented modeling of matching tools. Some of the above
mentioned extraction-tools are designed according to this pattern.
Others are implemented, but not modeled according to a unique
pattern, because they consist of legacy code. Especially the in-
teractive methods are insufficient considered in the Matching Tool
pattern. We need a model, which is flexible regarding to the type
of extracted objects and to extraction method. With this modeling
of extraction methods we are able to design a component based
extraction system, which is so flexible that new components with
new extraction methods can be easily integrated by the user.

It is desirable to integrate the Semi-Automatic System within an-
other Applications, e. g. a GIS application. Since the Semi-
Automatic System has interactive components we have to coordi-
nate this with the respective application. The graphical user inter-
face and the user-event handling should be designed in the same
manner. A solution of this problem is given by the JavaBeansTM

concept. We are able to create JavaBeans in the manner, we have
shown in section 4. The Semi-Automatic System can be composed
with other JavaBeans to complex applications. Precondition is, that
other Systems support JavaBeansTM too. Because there are other
software component models available 1, we have to observe, which
component model wins recognition in the future.

We have modeled reflectance in a reflectance-model independent
manner using the facilities of object-oriented modeling. Applica-
tions, which handle reflectance, e. g. ray-tracers, need not to sup-
port a special reflectance model for the use of our objects. The
extraction of reflectance is one of our future tasks.

For an optimal co-operation between a GIS and a Semi-Automatic
Extraction System we suggest, that a GIS should support access
by an object-oriented interface. Since extracted objects contain
higher level information than simple data, this information would
not get lost by fulfilling this request. New kinds of objects with
individual implementations of their operations should be able to be
integrated in a GIS. Our tests with JavaTMObject Serialization show,
that this approach is principally feasible.

ACKNOWLEDGMENTS

The inspiration and support by Prof. Dr.-Ing. Wolfgang Förstner
and Dr.-Ing. Eberhard Gülch are gratefully acknowledged.
This research is supported by BMBF/DARA GmbH under Grant
50 TT 9733.

�e. g. ActiveX or DCOM for Windows based platforms

D. Fritsch, M. Englich & M. Sester, eds, 'IAPRS', Vol. 32/4, ISPRS Commission IV Symposium on GIS - Between Visions and Applications,
Stuttgart, Germany.



Hardo Müller 7

Figure 12: The Graphical User Interface of the Semi-Automatic System. The building models are projected as wire-frame models in the
working area of the system and visualized with mapped texture in a VRML browser. The window at the bottom shows the structure of the
CSG tree.

Figure 13: The JavaTM BeanBox, an example application for JavaBeansTM. The Semi-Automatic System is loaded in the working area
as ObjectExtractionBean. This small application consisting of two buttons and the image area was composed in about 3-4 minutes to a
runnable version. The remaining GUI elements belong to the BeanBox.

D. Fritsch, M. Englich & M. Sester, eds, 'IAPRS', Vol. 32/4, ISPRS Commission IV Symposium on GIS - Between Visions and Applications,
Stuttgart, Germany.



8 Hardo Müller

Figure 14: Aerial images

Figure 15: Close range image

Figure 16: Texture extraction example. The texture is automati-
cally extracted and mixed from two aerial images (figure 14) and
one close range image (figure 15). Please note, that the wall to
the right is only partly covered by the close range image and thus
only partly mapped with texture from that image.

REFERENCES

Booch, G., 1994. Object-oriented Analysis and Design. With Ap-
plications. Benjamin/Cummings Publishing Company, Inc.

Englert, R. and Gülch, E., 1996. One-eye stereo system for the
acquisition of complex 3D building descriptions. GIS.

Fischler, M. A. and Bolles, R. C., 1981. Random sample consen-
sus: A paradigm for model fitting with applications to image analy-
sis and automated cartography. CACM 24(6), pp. 381–395.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., 1995. Design
Patterns. Addison-Wesley.

Gülch, E. and Müller, H., 1997. Object-oriented software design in
semiautomatic building extraction. In: Integrating Photogrammet-
ric Techniques with Scene Analysis and Machine Vision III, SPIE
Proceedings, Vol. 3072.

Hoffmann, C., 1989. Geometric and Solid Modeling. Morgan Kauf-
mann, Palo Alto, CA, USA.

Koenderink, J. and vanDoorn, A., 1996. Bidirectional reflection dis-
tribution function expressed in terms of surface scattering modes.
In: ECCV96, Springer-Verlag, pp. II:28–39.

Läbe, T. and Ellenbeck, K.-H., 1996. 3D-wireframe models as
ground control points for the automatic exterior orientation. In: Pro-
ceedings ISPRS Congress, Comm. II, Vienna, IAP Vol. XXXI.

Läbe, T. and Gülch, E., 1998. Robust techniques for estimating
parameters of 3D building primitives. In: Proceedings ISPRS Sym-
posium, Comm. II, Cambridge.

Lafortune, E. P. and Willems, Y. D., 1994. Using the modified phong
reflectance model for physically based rendering. Technical Report
Report CW 197, Depaertment of Computing Science, K.U. Leuven.
URL: http���www�cs�kuleuven�ac�be��ericl�Phong�html.

Lang, F. and Förstner, W., 1996. 3D-city modeling with a digital
one-eye-stereo system. In: ISPRS Congress, Comm. IV, Vienna.

Lang, F. and Schickler, W., 1993. Semiautomatische 3D-
Gebäudeerfassung aus digitalen Bildern. Zeitschrift für Pho-
togrammetrie und Fernerkundung 5, pp. 193–200.

Müller, H., 1997. Designing an object-oriented matching tool. In:
3D Reconstruction and Modelling of Topographic Objects, Interna-
tional Archives of Photogrammetry and Remote Sensing, Vol. 32,
ISPRS Commission III/IV, pp. 120–127.

Müller, H., 1998. Experiences with semiautomatic building ex-
traction. In: Third Course in Digital Photogrammetry, Institüt für
Photogrammetrie, Universität Bonn and Landesvermessungsamt
Nordrhein-Westfalen, chapter 12.

Obj, 1996. The Common Object Request Broker: Architecture and
Specification. URL: http���www�omg�org�corba�corbiiop�htm.

Ope, 1998. OpenGIS Simple Features Specification For CORBA.
Revision 1.0 edn.

Rat, 1997. Unified Modeling Language. Version 1.1 edn.
URL: http���www�rational�com�uml.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen,
W., 1991. Object-Oriented Modeling and Design. Prentice-Hall,
Inc.

Sun, 1997. JavaBeansTM . Version 1.01 edn.
URL: http���java�sun�com�beans.

VRM, 1997. The Virtual Reality Modeling Language. ISO/IEC
14772-1:1997,
URL: http���www�vrml�org�Specifications�VRML��.

D. Fritsch, M. Englich & M. Sester, eds, 'IAPRS', Vol. 32/4, ISPRS Commission IV Symposium on GIS - Between Visions and Applications,
Stuttgart, Germany.


