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ABSTRACT 

In this paper a fast algorithm for solving large sparse, positive definite matrices is discussed. These equations arise in many surveying 
problems that are solved by the least squares adjustment, such as network adjustment, photogrammetric aerotriangulation, control 
network for deformation observation, leveling and applied satellite geodesy. 

1. INTRODUCTION 

In the least squares adjustment the main computational burden 
rests on solving the system of linear normal equation 

AX=b (I. I) 

Where A is a square and symmetric (semi-)positive definite n 
by n matrix. This is especially true if the system is very large 
that is quite common in the field of surveying. Fortunately, 
often not all entries of A are nonzero, and usually the rate of 
fill decreases with the size of the matrix. 

If we distinguish among zero elements and nonzero elements of 
a matrix, we get the concept of the sparse matrix. There are two 
important advantages when we use these sparse matrices. Firstly, 
if we operate only upon the nonzeros, we save time; secondly, 
only the nonzeros have to be stored. However, the special data 
structures and special algorithms that give an overhead in time 
and storage are needed. Furthermore, we have to design special 
algorithms in a way that they use and preserve sparsity. 

The most popular algorithm used for the solution of the system 
(I.I) is based upon Choleski decomposition of the normal 
matrix A . A positive matrix A can be written as the product of 

a low triangular matrix L and an upper triangular matrix L,. : 

( 1.2) 

The solution of the system ( 1.1) then goes in two steps: 

I. let Y = L7 X , solve Y from LY = b by forward solution; 

2. solve X from L'X = Y by backward solution. 

The lower triangular factor L (the Choleski factor) is computed 
by a process called Choleski factorization. There are thus three 
steps: Choleski factorization, forward substitution and 
backward substitution, of which Choleski factorization is the 

59 

most time consuming. 

If the normal matrix A is sparse then the Choleski factor L is 
generally also a sparse matrix. The Choleski factor L has at 
least the same nonzero as the lower triangle of A (neglecting 
numerical cancellations), but usually there are also nonzero in 
L which were not present in A . These elements are called fill­
in. The amounts of fill in and the location of fill-in elements 
depends on the order in which the pivots of the Choleski factor 
are chosen, and hence on the order of the unknowns. The 
solution of the permuted system: 

(PAP')(PX) = Pb ( 1.3) 

with permutation matrix P' and solution X = P7 (PX), is 

identical ( except for small round of) to the solution of the 
system ( 1.1 ). 

There is no need to pivot or exchange rows or columns for 
stability reason. Therefore we are free to choose the order of the 
unknowns, or the permutation matrix P , in such a way as to 
minimize fill-in. The Minimum Envelope Strategy is one of the 
method to find an ordering to permute A such that the 
nonzeros are confined to a specific region as small as possible 
called 'envelope'. The fill-in will occur only within the envelope. 

2. THE COMPUTER REPRESENTATION OF A LARGE 
SPARSE, POSITIVE DEFINITE MATRIX 

In ordinary matrix calculus we deal with full rectangular 
matrices. These matrices can be stored in a rather 
straightforward way, whereby individual elements a ij can be 

accessed very easily. 

With large sparse matrices we try to store and operate on the 

* P is orthogonal, thus P-1 = P' . 



nonzero only, which can result in considerable saving in 
computing requirements. So, firstly we have to specify a storage 
scheme or data structure in order to store a large sparse matrix 
in computer memory, and secondly we have to design 
algorithms which use this data structure in the most profitable 
sense. 

There are many different storage schemes: simple ones and very 
complex ones. In this paper we introduce Envelope method: 

• Envelope, or variable band storage (for symmetric 
matrices only); all elements within the envelope around the 
nonzeros, zeros and nonzeros alike, are stored. The set of 
elements aij which are stored is called Envelope(A) . Note 

that only half of the matrix is stored. 

Envelope(A) = {aij I J; $; j $; i} (2.1) 

where 

(2.2) 

is the first nonzero element in row i . 

The access time for a single element is not that important for 
Choleski factorization and ordering algorithms, since most of 
the time entire rows or columns are needed. 

The nonzero storage is the most complex storage scheme. The 
envelope storage scheme involves the overhead of the sparse 
matrix storage schemes, and besides access time is low. In this 
scheme however, also some zeros are stored and hence will be 
operated upon. 

The envelope storage scheme of the sparse symmetric matrix is 
that VE (VectorEnvelope) stores first nonzero element and all 
elements up to diagonal of every row (zeros and nonzeros alike). 
So the i'th row of A needs at least /J; ( A) + I units of memory 

N 

space; VE needs I.,(/J; + I) units memory; and PD 
i=l 

(PointerDiagona[) needs N units memory. So the total storage 
space for sparse symmetric matrix is: 

N N 

I.,(/J; + 1) + N = L.,/J; + 2N (2.3) 
i=l i=l 

An advantage of this kind storage scheme is that all of the fill-in 
elements are located between the first nonzero element and 
diagonal element of i'th row when A is factored by Choleski 
decomposition, the L elements can be stored in VE, while the 
other elements of A are no need moving and storing. 

3. THE SPARSE MATRIX AS A GRAPH 

A graph G = (V, E) consists of a set nodes (or vertices) V, and 

a set of edges E. We may associate the symmetric n by n matrix 

A with a labeled undirected graph G-' =(VA, E-4). The set of 

nodes corresponds to the diagonal entries of the matrix, the set 
of edges to the off-diagonal entries. Labeled means that each 
node has a unique number corresponding to a row, column or 
unknown; undirected means that we do not distinguish between 
the edge from node v to w and the edge from w to v, i.e. the 
matrix is symmetric. For any n by n permutation matrix P cf. I, 
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the unleveled graph of A and PAPr are the same, but the as­
sociated labeling are different. 

4. CHOLESKI DECOMPOSITION 

4.1 The Inner Product Method 

In the least squares adjustment the coefficient matrix A of 
linear normal equation (I.I) is a square and symmetric (semi­
)positive definite n by n matrix, which has a unique triangular 

factorization LLr , where L is a lower triangular matrix with 
positive diagonal entries. 

The linear normal equation (1.1) can be expressed by 
followings: 

(4.1) 

There are a number of methods to perform the choleski 
factorization. In some paper the 'inner product', the 'bordering' 
and the 'outer product' method is distinguished. The inner 
product method will be described here, since it has less 
operations comparing with others. It can be described as follows. 

for i= l,···,N 
i-1 

l = - "12 u a;; L...J ik 
k = l 

end of loop j 

end of loop i 

(4.2) 

These formulae can be derived directly by equating the elements 
of A to the corresponding elements of the product LLr . 

4.2 Sparsity Consideration 

In most practical applications the matrix to be factored is sparse. 
If the sparse symmetric positive definite matrix A has a Choleski 

factorization LLr , then the matrix L is usually sparse too, but 
also newly created nonzeros, called fill-in. According to the 
envelope storage scheme of a sparse symmetric matrix, the 
algorithm of the inner product of Choleski factorization can be 
described as follows. 

It is easy to modify the algorithm (4.2) with the help of a matrix 
interface between a matrix element aij and a vector VE 

(VectorEnvelope) with its address pointer vector PD 
(PointerDiagonal), and a switch of which are only located in the 
envelope should be exceeded. 

5. SOLVING LINEAR NORMAL EQUATIONS BASED 
ON CHOLESKI FACTORIZATION 

5.1 General Form 

As we described in Chapter 1, there are three steps to solve 
linear normal equations based on Choleski factorization: 
Choleski factorization, forward substitution and backward 
substitution. 



After Choleski decomposition of the normal matrix A, a low 
triangular matrix L and an upper triangular matrix L7 are 
obtained. So, the forward substitution and the backward 
substitution can be expressed as follows respectively. 

forward substitution: 

for i = 1, .. ·, N 

Y; = (b; - tl;kYk )f;; (5.1) 

end of loop i 

backward substitution : 

for i = N, .. ·,l 

x, =(y, - Itklxk) /2,, 
k=t+l /' 

(5.2) 

end of loop i 

5.2 Sparsity Consideration 

After Choleski decomposition of the normal matrix A, 
according to the envelope storage scheme of a sparse symmetric 
matrix, the algorithm of the forward substitution and the 
backward substitution can be described as follows. 

It is easy to modify the algorithm (5.1) and (5.2) with the help 
of a matrix interface between a matrix element alj and a vector 

VE (VectorEnvelope) with its address pointer vector PD 
(PointerDiagonal), and a switch of which are only located in the 
envelope should be exceeded. 

6. PARTIAL INVERSE 

The inverse of the normal matrix plays an important role in least 
square's problems: it is the covariance matrix of the least 
squares estimations x and it is also very important for quality 
control of the adjustment system. 

The inverse of a general regular and square matrix A can be 
computed by solving the system AB=/, with B = £ 1 • If we 
already have factored A, the inverse can be computed column 
by column by repeated forward and back substitution with 

column e; of/. This is a very straightforward way of computing 
the inverse of a matrix. 

For sparse matrices, repeated forward and back substitution is 
not a very elegant way for computing the inverse of a matrix. 
The inverse of a sparse matrix is generally a full matrix. 
However, we do not always need all these elements. For most 
applications, the sparse inverse is sufficient, and other elements 
are not needed. And also for some special purpose, only one or 
a few elements of the inverse have to be computed. For this rea­
son, we will introduce a technique to compute a large number of 
elements of the inverse, corresponding to the nonzeros in the 
Choleski factor, and modifying it to meet the needs of some 
special purposes. The inverse that is computed by this technique 
is called the partial inverse or sparse inverse. 

6.1 The General Case 

Let A be an n:12 symmetric positive definite matrix, with inverse 
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A-1 = B , and L be the lower triangular matrix from the 
factorization A = LL7 , then we have the following derived 
forms. 

By a recursive partitioning technique, we can compute a subset 
of the inverse in an economic manner. 

The algorithm for computing the inverse of A should be 
expressed as follows. 

Bn = 1/[nn 

for i = n - I,··· ,I 

b; = - B;+17,/t;; (6.2) 

b;; = ( 1/1;; - l~b; )/, 

end of loop i 

6.2 Sparsity Consideration 

It has been discussed in Chapter 4, in most practical 
applications the matrix to be factored is sparse, then the matrix 
L is usually sparse too, but also newly fill-in created. 

On the basis of the algorithm (6.2), let us consider the 
computation of a single element blj in the i th column of the 

inverse, i.e., 

-T- I 
bij = b1 !;1!11 : (6.3) 

Assume that I, is a sparse vector, then only those elements of 

b1 (the j'h column of the inverse) are needed which 

correspond to a nonzero in l,. It turns out that, when lij itself 
-

is a nonzero, the required elements in b 1 correspond also to 

nonzero in the Choleski factor. This becomes plausible when 
we consider that the fill-in, created in the i th elimination step of 

Choleski factorization, is given by Nonzero('; f). Hence, it is 

possible to compute only the elements b,1 of the inverse which 

correspond to nonzeros in the Choleski factor, i.e. 
(i,j) E Nonzero(L). 

There are two forms of algorithm (6.2) for computation. One is 
to compute the inverse elements row by row, and another is to 
compute the inverse element column by column. The second 
form can be expressed as follows. 

for i=n, .. ·,l 

for j = n, .. ·, i + I 

bJ; = - I,bjJk, lz,, 
k=i+l I' 

end of loopj 
(6.3) 

b;; =(111;; - I,b;Jk,) /2,, I k=i+l I' 
end of loop i 

An algorithm of form one solves the inverse from right to left 



row by row, its needs overhead space to store a matrix L. While 
the second algorithms compute the inverse element's column by 
column, only a vector is needed for storing a column elements 
of matrix L. Here, the second method is suggested for our 
purpose. 
The operation count is about twice the operation count of the 
Choleski factorization process. However, due to additional 
overheads, the actual execution time of the sparse inverse is 
approximately three times the time needed for Choleski factori­
zation. For most applications the sparse inverse is sufficient, 
and other elements are not needed. 
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