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ABSTRACT 

A priori object information like parallelism and perpendicularity can be very useful for 3D-reconstruction, especially in 
architectural photogrammetry. With digital close-range imagery parallelism of object lines can be exploited by applying 
automatic vanishing point detection. This image analysis technique allows the detection of parallel object lines and 
leads to their spatial orientation in the camera system. The latter can be used for 3D-reconstruction as well as for the 
determination of the exterior orientation parameters of the image involved. A priori object information in the form of 
angles between object lines (like perpendicularity) can improve vanishing point detection considerably. 
The paper gives a short overview of research in vanishing point detection that has a long history in the computer vision 
community. A new method for vanishing point detection that is based on rigorous statistical testing and perpendicularity 
constraints is presented. First results of the application of this method to imagery of buildings are discussed. 

1. INTRODUCTION 

Lines in an image that are projections of parallel lines in 
object space intersect in one point in the image plane, the 
so-called vanishing point. This holds under the 
assumption of a perfect pin-hole camera model. The 
vanishing point is found as the intersection of the 
interpretation planes associated with the image lines and 
the image plane (figure 1 ). In case of parallelism of image 
plane and object lines the vanishing point is at infinity. To 
avoid this singularity, the vanishing point can be defined 
as the intersection of the interpretation planes and the 
Gaussian sphere (Shufelt, 1996). In other words: the 
vanishing point is related to an orientation in object space 
represented by a point on the Gaussian sphere. In the 
sequel the contradictory term "vanishing point orientation" 
is used to denote this spatial orientation. 

With the detection of a vanishing point the orientation of 
the object lines is known in the camera system. With the 
detection of several vanishing points the resulting 
orientations can be used for object reconstruction and for 
exterior orientation (van den Heuvel, 1997). In all 
applications where parallel object lines are present, 
vanishing point detection can be a valuable tool for the 
automation of these major tasks of vision systems. 

Vanishing point detection is traditionally applied for the 
navigation of autonomous vehicles or robots in indoor or 
outdoor man-made environments (Pia et al., 1997; 
Straforini et al., 1992). This paper concentrates on the 
application of vanishing point detection to terrestrial 
close-range imagery of buildings. An example of this 
application can be found in (Collins, 1993). An application 
to building reconstruction from aerial imagery is 
investigated in (Shufelt, 1996). The main difference 
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between applications for navigation and for object 
reconstruction is the fact that navigation applications 
demand fast algorithms because of their real-time nature. 
In applications for object reconstruction this limiting 
condition can be dropped, as full automation is generally 
not possible and thus operator interaction will be the 
bottleneck for the processing time. 
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Figure 1: Vanishing point on image plane and Gaussian 
sphere after (Shufelt, 1996) 

After a discussion of the characteristics of existing 
vanishing point detection techniques in section 2, a new 



technique is presented in section 3. This technique is 
more computationally expensive than existing techniques, 
but it is rigorous from a statistical point of view. In section 
4 some examples of applications of the proposed 
technique are presented. 

2. VANISHING POINT DETECTION TECHNIQUES 

Straight line features have to be extracted from the image 
prior to the vanishing point detection. This preprocessing 
step will not be discussed here as it has been thoroughly 
investigated (Burns et al., 1986; Forstner, 1988). In this 
section only the major characteristics of previous 
research in vanishing point detection are emphasized. 

Vanishing point detection can be regarded as the search 
for a set of lines that intersect at one point in the image 
plane. It is assumed that the largest sets of lines 
correspond to vanishing points. As a vanishing point can 
be outside the image boundaries and even at infinity, the 
search area is unbounded. In order to bound the search 
domain, most vanishing point detection techniques apply 
a specific representation of the image lines. 

In Straforini (1993) a representation in a bounded and 
partitioned polar space is used. Each line is represented 
by a point in polar space and grouped with lines that are 
located in the same partition. In this approach there are 
restrictions to the relative position of camera and object. 
Other shortcomings are the dependency of the 
partitioning of the polar space on the orientation of the 
camera relative to the object and the fact that the 
precision of the line parameters is not taken into account. 

Most of the vanishing point detection techniques use a 
Hough transform approach in which the parameter space 
is located on a so-called Gaussian sphere, see for 
instance (Lutton et al., 1994). In these approaches 
interpretation planes associated with image lines are 
intersected with a (unit) sphere with its center positioned 
at the projection center. Then these intersections are 
great circles and vanishing points are found as 
intersections of great circles (figure 1 ). In order to detect a 
vanishing point a quantization of the sphere is performed 
and the number of great circles running through each 
bucket (or pixel) of the grid on the sphere is counted. 
Then maxima are detected and assumed to correspond 
to vanishing points. In this approach there are no 
restrictions on the orientation of the camera and the 
search space is limited. A disadvantage is the choice for 
the quantization of the sphere to be made. 
In Shufelt (1996) several alternatives for Gaussian 
sphere-based vanishing point detection are investigated, 
including two complementary methods. The first method 
integrates a priori knowledge on camera orientation and 
knowledge on the geometry of the imaged objects. The 
second method applies edge error modeling in order to 
account for the precision (and length) of the lines. These 
and existing methods are combined resulting in 24 
experimental options that are tested on aerial imagery. 
In the next section a new method for vanishing point 
detection is presented that applies geometric object 
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information, but does not use the Hough transform and 
thereby eliminates its disadvantages. This method is 
tested on close-range imagery of buildings. 

3. A NEW METHOD FOR VANISHING POINT 
DETECTION 

The principal goal of the new method for vanishing point 
detection is the robust detection of image lines that 
intersect at the three main vanishing points, under the 
assumption of perpendicularity between the three 
corresponding orientations in object space. The image 
line feature extraction is not part of the procedure but 
considered as a preprocessing step. The principles of the 
method can be used for the detection of an arbitrary 
number of vanishing points with or without a priori 
information on object geometry. 

3.1 Overview 

The method proposed here is based on the statistical 
testing of the intersection hypotheses of combinations of 
3 image lines or rather the intersection of the 3 
interpretation planes associated with these lines. This test 
is discussed in the next section. The major steps of the 
procedure are the following (the procedure is discussed in 
detail in section 3.3): 
• compute statistical test values of all combinations of 3 

interpretation planes (i.e. image lines) 
• detection of groups of lines that intersect in a 

vanishing point by clustering based on these test 
values (section 3.4) 

• for the largest clusters: statistical testing of line error 
hypotheses using all condition equations and iterative 
elimination of rejected lines 

• final selection of largest cluster as the vanishing point 
cluster 

• restart of the procedure for the next vanishing point 
with the use of information on perpendicularity to 
previously detected vanishing point(s) 

• after detection of the 3 vanishing points: statistical 
testing of all condition equations (for intersection and 
perpendicularity) 

3.2 The statistical test of the intersection constraint 

The intersection constraint introduced in the previous 
section is formulated with the normals to the interpretation 
planes of the 3 lines involved. The image lines are 
represented by the image coordinates of the end points 
(figure 2). The image coordinates are assumed to be 
corrected for lens and image plane distortions. Then a 
point in the image corresponds to a direction in object 
space (in the coordinate system of the camera): 

x = (x, y,- c) , c: camera constant ( 1 ) 

The normal to the interpretation plane of the image line i 
with end points a and b is found with: 

n; = x" xx" ( 2) 
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Figure 2: The interpretation plane 

The intersection constraint can be written as the 
determinant of the matrix build from the 3 normal vectors 
i, j and k (van den Heuvel and Vosselman, 1997): 

[n; ,ni,nk]=ctet(n; ,ni,nk)=O ( 3) 

In case the lines do not (perfectly) intersect this constraint 
will result in a misclosure (m): 

( 4) 

The hypothesis of interpretation plane intersection is 
tested with the normalised misclosure relative to a critical 
value (cv): 

l..!!!.._l<cv 
am 

( 5) 

The standard deviation of the misclosure (a,,,) is 

computed from the covariance matrix of the image 
coordinates ( Q ): 

( 6) 

with b the vector of partial derivatives. The part of b for 
image point a can be written as: 

b" = am an; 
an' ax" 

( 7) 

The camera constant is assumed to be error free. For the 
image points covariance matrix several options are 
available for the stochastic model: 
• If lines are extracted using an edge detection 

approach, the variances of the coordinates of the end 
points are assumed to decrease linearly with the 
length of the line in pixels. 

• For lines that are extracted manually by measurement 
of their end points, a constant variance is assumed for 
all end point coordinates. 

Precision information available from the feature extraction 
procedure could be used for the stochastic model, but 
then the model does not account for imperfections of the 
camera model or for possible deformations of the object. 
Line orientation does not play a role in the stochastic 
model as only precision information perpendicular to the 
line affects the precision of the interpretation plane 
normals. 

3.3 The procedure 

In this section the procedure for vanishing point detection 
is discussed in detail. Although the method consists of 
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the steps in section 3.1 there are differences between the 
parts of the procedure for each vanishing point. The 
differences relate to the use of perpendicularity 
assumptions. 

3.3.1 The first vanishing point 

The intersection constraint introduced in section 3.2 
involves 3 lines. If a statistical test is computed for each 
combination of 3 lines, we have to deal with an O(n3) 

problem (n is the number of image lines). Although 
computing efficiency is not a design goal, the order is 
reduced to rt by selecting a line of the first vanishing 
point, the so-called start-line. The longest line is chosen 
as the start-line and in many cases this line belongs to 
one of the 3 vanishing points to be detected. If this is not 
the case the start-line can be chosen manually. The 
procedure for the first vanishing point runs as follows: 
• The test value of (ri-1 )(n-2)/2 combinations of the 

start-line and two other image lines is computed 
according to (5). 

• Lines are clustered using the results of the testing 
(section 3.4). 

• For the largest clusters an adjustment is set up, based 
on all (independent) constraints in the cluster and a 
line error hypothesis is tested for each line. 

• Rejected lines are removed from the cluster and the 
adjustment is repeated until all lines are accepted. 

• The largest cluster is selected as the vanishing point 
cluster. 

From the adjustment the adjusted 3D orientation of the 
first vanishing point results. This orientation is input to the 
detection procedure of the next vanishing point. 

3.3.2 The second vanishing point 

Because the orientation of the second vanishing point is 
assumed to be perpendicular to the orientation of the first, 
the normal to the interpretation plane of the start-line can 
be replaced by the orientation of the first vanishing point 
(v,) in the procedure for the first vanishing point. v, results 
from the normals of two interpretation planes i and j of the 
first vanishing point: 

( 8) 

The normals are computed with adjusted observations 
from (2 ). The constraint (3) is rewritten as: 

( 9) 

Again the computation of the statistical test values is of 
order rt . The perpendicularity between the second and 
third vanishing point orientation is used to detect both 
vanishing points in one go. Therefore a second statistical 
test is introduced to test the hypothesis of 
perpendicularity between the normals i and j. The related 
constraint is: 

(n;xv 1)·(nixv 1)=0 ( 10) 

Now two sets of test values are available for the 
clustering. First the clustering is performed using the 
smallest of the two values. This results in a (largest) 
combination cluster of lines of the second and third 



vanishing point. Then the clustering is repeated using 
only the lines of the combination cluster and test values 
from the parallelism test (5). In this way the second 
vanishing point is detected as a subset of the 
combination cluster, thereby increasing the chances of a 
correct detection. 

3.3.3 The third vanishing point 

For the detection of the third vanishing point the 
remaining lines of the combination cluster could be used. 
But in order to use the information contained in the 
detection of the second (and first) vanishing point, all 
lines are used for an intersection test that is based on the 
orientations of the first two vanishing points computed 
from (8). Now (9 ) is rewritten as: 

( 11 ) 

The computation of the statistical test values reduces to 
order n because in fact the third vanishing point is already 
known with the detection of the first two. This is due to the 
perpendicularity assumption: 

( 12) 

By allowing all lines to be candidate for the detection of 
each vanishing point - even lines that are in a cluster of a 
previously detected vanishing point - the lines can be 
detected that are on (or close to) a so-called horizon line, 
the line that connects two vanishing points in the image 
plane (Williamson and Brill, 1989). It is important to detect 
these lines because an ambiguity in their spatial 
orientation remains. 

3.4 Clustering 

The acceptance of statistical test (5) is evidence for the 
intersection of 3 lines in a point in the image plane. A 
clustering is applied to the test results that aims at the 
detection of groups of lines that intersect in one image 
point. The clustering procedure for the first two vanishing 
points includes the following steps: 
• For each accepted test it is checked whether one of 

the two lines is present in an existing cluster (the third 
line is the so-called start-line or a vanishing point 
orientation). If this is not the case, a new cluster is 
established. 

• If a line of an accepted test is present in an existing 
cluster, the other line becomes a candidate for the 
cluster. 

• The candidate line becomes a member of the cluster if 
all the tests of lines already in the cluster and the 
candidate line are accepted. If this is not the case, a 
new cluster is established. 

This procedure is repeated as long as new clusters are 
created. In the last iteration all tests are evaluated in the 
presence of all clusters. The result is that lines can 
appear in more than one cluster and overlap between 
clusters can be close to 100%. The major advantage is 
the reduced sensitivity of the clustering result to the order 
in which the lines are processed. The largest clusters are 
analysed in more detail in order to decide which lines 
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belong to the vanishing point (see the next section). The 
size of a cluster is defined by the number of lines it 
contains, or optionally by the sum of the lengths of all 
lines in the cluster. In the latter case clusters with longer 
lines are preferred. 

In the clustering procedure two critical values are used for 
evaluation of the statistical tests. One critical value for the 
candidate test (first step of the procedure) and another 
value for the membership test (last step of the 
procedure). Because type I errors (rejection of the 
intersection hypothesis although it is true) have to be 
avoided in the clustering phase, for the level of 
significance (a) the value 0.1 % is chosen for the 
candidate test. For the membership test a lower value for 
the level of significance is chosen (e.g. 0.01 %) in order to 
avoid the creation of many overlapping clusters. 

For the detection of the third vanishing point the 
clustering procedure can be simplified due to the 
perpendicularity to the orientations of the first two 
vanishing points detected previously. For the third 
vanishing point only one cluster is built from all lines for 
which the statistical test (5) is accepted. 

3.5 Adjustment and testing 

The clustering procedure described in the previous 
section results in groups of lines that are candidates for a 
vanishing point. For a preset number (e.g. 3) of the 
largest clusters an adjustment is set up. The functional 
model contains a complete set of n-2 independent 
condition equations (n is the number of image lines). 
These equations have the form of (3), (9 ) or (11) for 
respectively the first, second and third vanishing point. 
After linearisation this model can be written as: 

( 13) 

with: 
E { } mathematical expectation 

y vector of observations (image coordinates) 

B design matrix (partial derivatives, see (7)) 
QY covariance matrix of the observations 

The solution to this model is presented in (van den 
Heuvel and Vosselman, 1997). 

Two different types of statistical tests are applied. First an 
overall test or Fisher test is applied by computing the 
estimated variance of unit weight: 

, mT (BTQ B )-1 m 
( cr2 = ) y < CV er/ ( 14 ) 

(n-2) 

The vector of misclosures (m) is computed from the non­
linearised condition equations. The critical value (cv) of 
this test is derived from the Fisher distribution (degrees of 
freedom n-2, oo; a=1 %) multiplied with a factor 2 in order 
to avoid type I errors in this stage of the procedure. 
The second test is a line error test, examining the 
alternative hypothesis of an error in a single line. This is a 
so-called non-conventional alternative hypothesis 
(Baarda, 1968) and will not be discussed in detail here. 
The level of significance for this test is chosen in the 



same way as for the overall test. If a line test is rejected, 
the line is removed from the cluster and the model is built 
again. This iterative testing procedure stops if all line 
tests are accepted. The largest cluster of which the 
overall test and all line tests are accepted is assumed to 
be the cluster with the lines intersecting at the vanishing 
point. 

After the detection of the three vanishing points a final 
adjustment is performed. Then the three sets of condition 
equations used for each vanishing point are combined in 
one adjustment with the three perpendicularity conditions 
of the form: 

(n\xn{)·(n~xn~)=O ( 15) 

This is the condition equation for perpendicularity 
between the orientations of the first two vanishing points 
(1 and 2), derived from the normals of two interpretation 
planes (i and j for each vanishing point). As an option, the 
inclusion of the perpendicularity constraints can be 
dependent on the outcome of the statistical test of the 
perpendicularity hypothesis. 
For the final adjustment only lines that are uniquely 
clustered to one of the vanishing points are used, so 
horizon lines are excluded. The level of significance for 
the overall test and line error tests is set to 1 %. 

Figure 3: Delft image: lines of first, second and third vanishing point (from left to right) 

Figure 4: Delft image: rest of the lines, adjusted lines and non-adjusted lines (from left to right) 
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4. EXAMPLES 

In this section two applications of the new method for 
vanishing point detection are discussed. Both images are 
taken with a calibrated Kodak DCS420 digital camera 
with a 20mm lens. The CCD sensor of this camera 
contains approximately 1500x1000 pixels with a pixel 
spacing of 9µm. The images are taken from about 1.5m 
above the ground and as a result they contain a horizon 
line (the connecting line between the two vanishing points 
of the horizontal lines, see section 3.3). Before the 
extraction of straight lines, the images are corrected for 
lens distortion. Without correction long lines tend to break 
up in smaller parts due to line curvature. Straight lines 
were extracted using a line growing algorithm (Forstner, 
1988). 

4.1 Example 1: image of a historic building 

The first image is taken in the historic center of Delft 
(figure 5). The number of extracted lines varies with the 
parameter settings for the line growing algorithm. The 
settings used resulted in 397 lines with a minimum line 
length of 50 pixels. The standard deviation of the 
coordinates of the end points of the lines is modeled as 
follows: 

0.1 
a=- mm 

.Ji 
( 16) 

Where I is the line length in pixels. Then the largest 
standard deviation is 1.3 pixel. For the longest line (517 
pixels) the standard deviation drops below 0.5 pixel. 
These values are chosen relatively high because of 
deformations present in this old building. Assuming a 
better precision, lines in some parts of the building would 
be excluded from their vanishing points. 

Figure 5: Test image of a historic building in Delft 
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The result of the vanishing point detection is visualized in 
figure 3. In figure 4 on the left lines are shown that were 
not accepted as a member of one of the vanishing point 
clusters. Some lines obviously do not have a vanishing 
point orientation, for other lines - like the ones above and 
below the door - deformations of the building are 
suspected. The picture in the center of figure 4 shows 
lines that are adjusted for parallelism and perpendicularity 
constraints. In this example the maximum deviation from 
perpendicularity is 1.4 degree and the statistical test of 
the perpendicularity hypothesis was rejected. Lines that 
intersect with the first and third vanishing point (left and 
right in figure 3) are not adjusted because no choice for 
one of the vanishing points could be made. In figure 6 a 
part of the image is enlarged. The adjusted lines are 
shown in the upper half, the original lines extracted by 
line growing in the lower half of the figure. The angle 
between the adjusted lines and the original lines 
(1.2 degree) is due to deformations of the building in 
combination with the use of perpendicularity constraints. 
Without perpendicularity constraints the angle reduces to 
0.7 degree. 

Figure 6: Enlargement showing adjusted (top) and 
original lines 

In figure 4 on the right all the lines are pictured that are 
not adjusted. These are the lines that could not be 
(uniquely) grouped to one of the vanishing points. 30 of 
them are horizon lines. In table 1 results of clustering and 
statistical testing are summarised for both examples. 

vanishing Example 1 Example 2 
point # lines B' # lines a2 

- -
(rejected) ' (rejected) ' a,; ac) 

1 175 (1) 2.08 61(0) 0.32 
2 130 (3) 1.67 160 (9) 1.26 
3 104 (0) 1.25 20 (0) 2.49 
all 349 (0) 1.49 202 (0) 1.05 

Table 1: Results of the clustering and testing 



4.2 Example 2: image of the faculty building 

The second test image is an image of our faculty building 
(figure 7). Settings that were used for the line growing 
algorithm resulted in 250 lines with a minimum line length 
of 30 pixels. The standard deviation of the coordinates of 
the end points is a factor 2 smaller than in the previous 
example, but depends on the line length in the same way 
( equation 16). The largest standard deviation is close to 1 
pixel. For the longest line (1062 pixels) the standard 
deviation drops to 0.17 pixel. The result of the vanishing 
point detection is visualized in figure 8. The order of the 
pictures is as in the previous example. From top left the 
first three images show the lines of the three vanishing 
points. The fourth image shows the lines that were not 
accepted as a member of one of the vanishing point 
clusters. It was concluded from visual inspection that non 
of these lines is expected to intersect at a vanishing point. 
Because the image is taken almost perpendicular to the 
fagade, there are not many lines detected for the third 
vanishing point. In fact there is only one line of the third 
vanishing point visible (and detected) that has the spatial 
orientation of the third vanishing point (this is the line on 
top of the right tower of the building). The other 19 lines 
are all identified as horizon lines and thus excluded from 
the final adjustment (see bottom row of figure 8 with 
adjusted lines on the left and non-adjusted lines on the 
right). The adjustment only contains one perpendicularity 
condition between lines of the first and second vanishing 
point. The deviation from perpendicularity before 
adjustment was 0.065 degree and the statistical test of 
the perpendicularity hypothesis was accepted. Clustering 
and testing results are summarized in table 1. 

Figure 7: Test image of the faculty building 

5. CONCLUSIONS 

A new method for vanishing point detection has been 
presented. This method is based on rigorous statistical 
testing and exploits the assumption of perpendicularity 
between the three major spatial orientations of the object 
lines. This assumption as well as the assumption of 
parallelism of object lines - the basic assumption for 
vanishing point detection - frequently holds for man­
made objects like buildings. 
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The characteristics of the method can be summarized as 
follows: 
• The method involves only a small number of 

parameters. Two types of parameters can be 
distinguished: parameters for the stochastic model of 
the observations and parameters for the statistical 
testing (i.e. the levels of significance). 

• After detection of the first vanishing point the 
detection of second and third vanishing point is 
facilitated by the use of perpendicularity information. 
In the example of section 4.2 even a single line with 
the spatial orientation associated with the third 
vanishing point, was detected. 

• The detection of lines on (or close to) the horizon line 
is part of the procedure. 

• The adjusted spatial orientations of the lines that have 
been uniquely identified to intersect at a vanishing 
point, result as a by-product. 

• The method is not designed for real-time applications 
because it is computationally expensive. 

Although the new method has not been extensively tested 
and compared to existing techniques for vanishing point 
detection, the results of the presented tests show its 
suitability for architectural applications. 
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