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ABSTRACT

Efficient multi-resolution image fusion aims to take advantage of the high spectral resolution of Landsat TM images
and high spatial resolution of SPOT panchromatic images simultaneously. This paper presents a multi-resolution data
fusion scheme, based on subband image decomposition. Motivated by analytical results obtained from high-resolution
multispectral image data analysis: the energy packing the spectral features are distributed in the lower frequency
subbands, and the spatial features, edges, are distributed in the higher frequency subbands. This allows to spatially
enhancing the multispectral images, by adding the high-resolution spatial features (extracted from the higher subbands
of a panchromatic image) to them, in an inverse subband coding procedure. This technique finds application in multi-
spectral image interpretation, as well as medical images of the same part of body obtained by several different imaging
modalities. In this paper, the low resolution Landsat Thematic Mapper images (with 30-m and 75-m pixel size) are
spatially enhanced to the 10-m resolution by fusing them with the 10-m SPOT panchromatic data. This method is
compared with the IHS and PCA and the Brovey transform methods. Results show it preserves more spectral features
with less spatial distortion.

1 INTRODUCTION

The aim of remote sensing is acquisition and interpretation of spectral measurements made at a distant location, to
obtain information about the Earth’s surface. In order to produce a high accuracy map, the classification process assigns
each pixel of the image to a particular class of interest. In remote sensing systems pixels are observed in different
portions of electromagnetic spectrum, therefore the remotely sensed images are vary in spectral and spatial resolution.
To collect more photons and maintain image SNR, the multispectral sensors (with high spectral resolution and narrow
spectral bandwidth) have a larger IFOV (i.e. larger pixel size and lower spatial resolution) compared to panchromatic
with a wide spectral bandwidth and smaller IFOV (higher spatial resolution) sensors. With appropriate algorithms it is
possible to combine these data and produce imagery with the best characteristics of both, namely high spatial and high
spectral resolution. This process is known as a kind of multisensor data fusion. The fused images may provide increased
interpretation capabilities and more reliable results.

Multisensor image fusion combines two or more geometrically registered images of the same scene into a single image
that is more easily interpreted than any of the originals. This technique finds application in remotely sensed
multispectral image data interpretation, and they are performed at three different processing levels according to the
stage at which the data fusion takes place; are named, pixel level, feature level and decision level (Pohl 1998). At the
pixel level, which is the lowest processing level, the measured physical parameters by sensors are merged together
(Figure 1). At this level, the higher resolution image is used as the reference to which the lower resolution image is
geometrically registered. Therefore, the lower resolution image is up sampled to match the ground sample interval of
the higher resolution image. In addition the resampling process, the images must have some reasonable degree of
similarity; thus this process requires radiometric correlation between the two images. At the feature level, image fusion
requires a robust feature selection scheme for the multisensor images and a sophisticated feature extraction technique
(Figure 2). The proposed method in this paper is a feature level image fusion technique. And finally, the decision level
image fusion represents a method that uses value-added data where the input images are processed individually for
classification (Figure 3).
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Figure 1. Pixel level multisensor image fusion procedure
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Figure 2. Feature level multisensor image fusion procedure
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Figure 3. Decision level multisensor image fusion procedure

The objective of the multisensor image fusion is to generate hybrid high spatial resolution multispectral images that
attempt to preserve the radiometric characteristics of the original low spatial resolution multispectral data. For example,
the combination of SPOT panchromatic image data, having a spatial resolution of 10m, with Landsat Thematic Mapper
images, having six spectral bands at 30-m resolution, can provide a hybrid image having a good spatial detail, and
useful spectral information for identification of small stands of species, which is not possible from neither the Landsat
nor SPOT images.

There are many algorithms for spatially enhancement of low-resolution imagery by combining of high and low
resolution data. Some widely performed in the remote sensing community are intensity-hue-saturation, IHS, principal
component analysis, PCA, and the Brovey transform (Chaves 1991). Recently, the wavelet transform has been used for
merging multiresolution images. A quantitative comparison has been done, in both spectral and spatial features, to
evaluate the wavelet transform and other traditional algorithm in (Zhou 1998).

All of the above methods are performed in the pixel level of multisensor image fusion. The objective of this paper is to
present a new feature based multisensor image fusion technique, to merge low-resolution multispectral images with
high-resolution panchromatic image, and compare the results with those of pixel based methods. This paper is
organized as follows. In section 2, three pixel level image fusion methods are reviewed. The proposed feature based
multisensor image fusion is introduced in section 3. In section 4, experiments of using the above methods for merging
the six TM images of Tehran and the SPOT panchromatic image of the same area are presented. And finally, the
spectral and spatial quality of the fused images is compared in section 5.
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2  PIXEL LEVEL IMAGE FUSION METHODS

Three famous and commonly used, pixel level, image data fusion methods are based on IHS, PCA and Brovey
transforms. Image registration is the first and important preprocessing stage of the multisensor image fusion by the IHS,
PCA and Brovey methods. At this stage the images should cover the same geographical area and have 100% of overlap.
The higher resolution image, SPOT panchromatic image, is used as the reference to which the lower resolution images,
TM images, are geometrically registered. The lower resolution images (six bands of TM with 30m resolution) are up
sampled to match the ground sample interval of the higher resolution image (SPOT panchromatic image with 10m
spatial resolution).

2.1  Intensity-Hue-Saturation Transform Method

Intensity, Hue and Saturation refer to the parameters of human color perception. Intensity refers to the total brightness
of a color. Hue refers to the dominant or average wavelength of light contributing to a color, when applied to data
displayed on an RGB monitor, hue can be described on a circular scale progressing from red to green to blue and back
to red. Saturation specified the purity of a color relative to gray; vivid colors are highly saturated while pale, pastel
colors have low saturation. The THS model defines colors on the equal intensity planes as coordinates of hue and
saturation, with hue being measured as an angle around the plane and saturation as the radial distance from the center of
the plane (Pratt 1991). THS cylindrical coordinates can be computed from RGB Cartesian coordinates:
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This transform can fuse any three bands of TM with SPOT PAN at one time. Three TM bands are transformed from
RGB coordinates to IHS coordinates, and then the SPOT PAN is stretched linearly so that it has the same mean and
variance as the intensity image has. Finally the intensity image is replaced by this stretched image and the new IHS
images are transformed back into RGB coordinates. The new spatially enhanced TM images can be computed by the
inverse transform given in equation (5).
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2.2 Principal Component Analysis Transform Method

The Principal Component transformation (also referred to as eigen value, Hotelling or discrete Karhunen-Loeve
transforms) uses spectral statistics of the image to define a rotation of the original image such that the data are arranged
along axes of decreasing variance. The coordinates for new axes are computed by an affine transformation of the
original data coordinates. PCA is a very useful tool for multispectral remote sensing data analysis, especially for image
data compression. It conducts a linear transformation of the multispectral space (measure space) into the eigen vector
space (feature space). Let X be an n-dimensional vector, and represent the multispectral observation of a pixel of the
scene. The principal component transform is defined by:

Y =ATX (6)
A is the matrix of normalized Eigen vectors of covariance matrix of X. Then Y has a diagonal covariance matrix:
Ar 0O L 0
Cy =E{(Y-my)(Y-my) }=ACA" = MM M M (7)
0 0 L A,

Where A >A,> ... >\, are the eigen values of the covariance matrix of X. The result of the principal component
transform is a set of uncorrelated images whose variances of the images’ energies are ordered in amplitude.

International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Supplement B2. Amsterdam 2000. 22



Ghassemian, Hassan

By using PCA the six TM multispectral bands are transformed into the six independent principal component images.
The first principal component image PC1, contains the information that is highly correlated to the six bands used as
input to PCA, while spectral information unique to any of the bands is mapped into other components. Then the first
principal component PC1 is replaced by SPOT PAN image, which is first stretched to have the same mean and variance
a PC1. Finally, performing an inverse PCA transform, given by equation (8), derives the merged TM images:

X=A"ly @®)

2.3  Brovey Transform Method

The Brovey transform is a simple method to merge data from different sensors. This transform is introduced by Earth
Resource Mapping PTY LTD in the ER Mapper 5.0 reference book 1995. It applied to Landsat TM images to merge
with SPAT PAN image, the formula used, in this research, are given in the following equations (Zhou 1998):

™
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3 A FEATURE LEVEL MULTISENSOR IMAGE FUSION

The above methods and several other techniques have been developed to merge high-resolution panchromatic data with
low-resolution multispectral data. Normally, the objective of these procedures is to create a composite image of
enhanced interpretability, but, those methods can distort the spectral characteristics of the multispectral images and the
analysis becomes difficult. Artifacts in the merged images arise from poor spectral correlation. As an example, in fusion
of near IR TM images with higher resolution panchromatic image of SPOT. Since the panchromatic band's sensory does
not extend into the near IR, images with vegetation will show good correlation between the visible bands and
panchromatic band, and poor correlation between the near IR and panchromatic band. Thus, false color IR composites
of fused imagery will tend to have artifacts, particularly near vegetation-soil boundaries, where the original image
contrast reverses between the visible and near IR bands. To overcome the above problems, this section presents a multi-
resolution data fusion procedure, allowing the use of high- resolution panchromatic image while conserving the spectral
properties of the original low-resolution multispectral images. It is desirable that this procedure for merging high-
resolution panchromatic data with low-resolution multispectral data should preserve the original spectral characteristics
of the later as much as possible. The procedure should be optimal in the sense that only the additional spatial
information available in higher resolution data is imported into the multispectral bands.

Let the observed scene be an L-m by L-m area on the Earth, the low-resolution (A,) sensor produces an N1 by N1
image, called fl(x,y), and the high-resolution (Az) sensor generates an N2 by N2 image, called fz(x,y), (Figure 4). The

Fourier transform (as a feature extraction process) of the images in the spatial-frequency domain are given by the
following equations:
N Np i A
Fy) =Y fi(xA +yA)) e HOwA (12)
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Figure 4. The Fourier transform of multiresolution images

The schematic diagram of the above transform is depicted by Figure 4. It is clear that, the low-resolution image is
located in the low-frequency region (up to NIS), and the high-resolution image occupies also the higher frequency up to

NZS’ this suggests a multiscale image coding scheme, or multiresolution scene representation (Ghassemian and

Landgrebe 1988). This scheme is based on subband image decomposition, motivated by analytical results obtained from
high-resolution multispectral image data analysis: the energy packing the spectral features are distributed in the lower
frequency subbands, and the spatial features, edges, are distributed in the higher frequency subbands (Ghassemian and
Venetsanopoulos1998). This allows to spatially enhancing the multispectral images, by adding the high-resolution
spatial features (extracted from the higher subbands of a panchromatic image) to them, in an inverse subband coding
procedure.

n
F(u,v) = Y H;(u,V)F, (u,v) (14)
i=l
] N, Ny, 2nj(xu+yv)A,
f(xap.yAn) =52 > Fuve (15)
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Figure 5 shows how a multiscale scene can be decomposed into subbands in the spatial-frequency domain, and, a
feature level data fusion can then synthesis a multispectral high resolution image of the scene with the spatial resolution
of A =L/N .
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Figure 5. Multisensor image data fusion by the spatial-spectral feature synthesizer
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4 EXPERIMENTS

The test area is 10-Km by 10-Km, located in the North-West of Tehran, Iran, which included various land cover types
such as: differed urban usage, international airport, natural Park, small lake, agricultural, mountains, bare soil,
highways, etc. The images were taken by Landsat satellite on May 1998 and by SPOT satellite on July 1998, provided
by Iranian Remote Sensing Center. Figure 6 shows part of the original images of TM bands in RGB color composite
(bands 4,3,2).

The TM images were registered geometrically onto SPOT panchromatic as a reference image, by selecting 20 control
points. The registration accuracy was lese than 0.75 pixel size. For all merging methods, except our proposed method,
the TM images resample to 10-m resolution, by using first order polynomial, and nearest neighbor interpolation
algorithm. The IHS and Brovey methods can merge only three multispectral bands with the PAN image; thus the six
multispectral bands were divided into two groups and merged separately with the PAN. The combination of TM bands
2,3,4 was selected because these bands most closely covered the same portion of the electromagnetic spectrum as the
PAN image has. The other group consisted of TM bands 1,5,7 image (Zhou 1998). The PCA and the proposed methods
can merge all multispectral bands with the PAN image at once.

Visual evaluation of the 432-bands and 157-bands color composite images, indicates that the THS, PCA and Brovey
methods change color of the composite images, which means the spectral features are distorted by these methods. Due
to limitation of space, only two color composite images are printed in this paper; there are 10 full size images, which
will be presented in the Congress. Figure 7 shows a 432-bands color composite image of the enhanced TM data by the
proposed method. Color appearance of the natural Park, small lake, agricultural, mountains, bare soil and highways
indicating that the spectral features have been preserved by this method. The clearly identify street blocks, the highway
and the airplanes in the international airport are indicating additive spatial resolution which is not clear in Figure 6.

The quantitative evaluation of methods can be calculated based on the spectral features performance in the classification
results. The data fusion should not distort the spectral characteristics of the original multispectral data. The spectral
quality of the spatially enhanced images is measured band by band by the correlation between the pixel value of the
original images and the spatially enhanced images, presented in the Table 1.

The spectral performance is calculated by the classification correlation between the original images and the spatially
enhanced ones. Classification performance evaluated by using two independent supervised classifies, Maximum
Likelihood, Minimum Distance, and by an unsupervised classifier ISOCLASS. The comparison is done with seven land
cover classes, bare soil, water, two vegetation covers, two urban structures, and highways were selected. The
classification correlation as a quantitative parameter is presented in Table 2.

™1 ™2 ™3 T™4 T™M5 ™7

IHS 0.634 0.702 0.725 0.541 0.765 0.703
Brovey 0.554 0.632 0.711 0.483 0.730 0.807
PCA 0.897 0.796 0.857 0.653 0.940 0.928
Featurefusion 0.909 0.842 0.913 0.865 0.944 0.927

Table 1. Correlation between the original TM bands and the spatial enhanced TM bands

MLC MDC ISOCLASS
TM432/THS432 0.519 0.331 0.464
TM432/Brovey432 0.501 0.300 0.407
TM432/ PCA432 0.552 0.387 0.619
TM432/ Featurefusion432 0.639 0.487 0.650
TM751/THS751 0.585 0.366 0.666
TM751/Brovey751 0.523 0.458 0.650
TM751/ PCA751 0.705 0.560 0.889
TM751/ Featurefusion751 0.733 0.688 0.888

Table 2. Classification correlation between original TM composite and the enhanced TM composite
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Figure 6. RGB color composite image of the original 4,3,2 TM bands, with 30-m spatial resolution

Figure 7. RGB color composite image of the fused 4,3,2 TM bands, with 10-m spatial resolution
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™1 ™2 ™3 ™4 T™MS ™7

IHS 0.952 0.921 0.921 0.922 0.934 0.912
Brovey 0.826 0.930 0.938 0.850 0.897 0.909
PCA 0.696 0.863 0.908 0.702 0.585 0.879
Featurefusion 0.976 0.978 0.979 0.977 0.963 0.974

Table 3. Spatial correlation between the original SPOT PAN and the spatial enhanced TM bands

Also the quantitative evaluation of methods can be calculated based on the spatial qualities. The data fusion should not
distort the spatial characteristics of the original high-resolution panchromatic data. Spatial quality of the enhanced
multispectral images is measured band by band by the correlation between the pixel value of the panchromatic image
and multispectral images, presented in the Table 3.

5 CONCLUSIONS

In this paper, a spectral-spatial feature data fusion method has been introduce to spatially enhance the multispectral
images. The spatial features were extracted from high-resolution panchromatic image, added to the spectral features of
multispectral images by a subband synthesizer. A qualitative and quantitative comparison used to evaluate the spectral
and spatial features performance of the proposed method and HIS, PCA, Brovey methods. The following conclusion
may be drawn from this research.

Multiscale image fusion is usually a trade-off between the spectral information extracted from multispectral images and
the spatial information extracted from high spatial resolution images. The proposed method can control this trade-off.
The proposed method achieves the best spectral quality in all bands. Comparing with HIS, PCA and Brovey methods.
The best spectral and spatial quality is only achieved simultaneously with the proposed feature based data fusion. In this
method, there is no need to resample images, which is an advantage over HIS, PCA and Brovey method, it can
performed in any aspect ratio between the panchromatic image and multispectral images’ pixels. The resampling
procedure degrade the spectral features of the multispectral images in any image merging method, so, it is important to
avoid the resampling process as much as possible.
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