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ABSTRACT

Typically in photogrammetric applications, an adjustment is used to estimate the parameters of a mathematical model
relating corresponding entities of two data sets. In the proposed technique, a statistical approach is used to robustly
estimate the parameters of the mathematical model when the correspondence is unknown. This method uses only the
conjugate entities between the data sets, filtering out “outliers”, for a robust solution. As a result, the correspondence
between entities is implicitly determined. This approach is general enough to be applied to several photogrammetric
applications including single photo resection, automatic relative orientation and surface matching. The use of this
technique offers new capabilities in these applications. In surface matching, change detection is facilitated. In single
photo resection, extracted linear features can be used to estimate the exterior orientation parameters. In automatic
relative orientation, the conjugate points are determined using the true mathematical relationship between conjugate
points, yielding a more robust solution than traditional image matching techniques.

1. INTRODUCTION

Many automated photogrammetric applications rely on matching techniques to establish the correspondence of entities
in two data sets. Once the correspondence is determined, the conjugate entities are usually used as observations in a
mathematical adjustment. The robustness of the matching technique greatly influences the accuracy of the parameter
estimation.

Well-established matching techniques such as area based, relational, and feature based matching use a similarity or cost
measure to determine correspondence. In area-based matching, the similarity measure may be correlation; in least
squares matching, the radiometric and geometric differences between two templates are minimized. In relational
matching, features are decomposed into primitives, and cost functions are tailored to these primitives (Schenk, 2000).
In feature-based matching, the generalized Hough transform (for example) can be used to measure the similarity of
extracted features. In all of these matching methods, the true mathematical model of the photogrammetric application
is not considered; rather, matches are based on an assumed similarity measure.

In many applications, we must estimate the parameters of a mathematical model relating entities in two data sets. To
do this without manually identifying corresponding entities is crucial in the automation of photogrammetric processes.
Specifically, we will look at three applications in which the parameters of a mathematical model relating two data sets
are estimated, while simultaneously determining the corresponding entities of two data sets. This is accomplished by
applying the modified Hough transform for robust parameter estimation.

2. BACKGROUND
2.1. Hough Transform Techniques
Hough(1962) introduced a method of determining parameters by way of a voting scheme. The basic principal of his

approach was to switch the roles of parameters and spatial variables. To illustrate this approach, consider the following
example. Suppose we want to detect points that lie on a circle of known radius, r. A circle can be defined by:

(x-u)’ +(y-v)’-r*=0 (1)
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With x,y the spatial variables and u,v the parameters (center) of the circle in the spatial domain. Now, let us introduce
the parameter space, represented by the coordinate system u,v. A point x;,y; in the spatial domain corresponds to a
circle in the parameter space centered at x;,y;. For every point in the spatial domain, there exists a circle in the
parameter space, and vise versa. The intersection of circles in the parameter space identifies centers of circles in the
spatial domain. The number of intersecting circles in the parameter space is directly related to the number of points
that lie on this circle (see Figure 1).

The Hough method is usually implemented by an accumulator array, which is an n-dimensional, discrete space, where
n is equal to the number of parameters. In our example with circles of known radii, the parameter space is two-
dimensional. Each circle is discretely represented in the parameter space. To keep track of all the circles, we simply
increment all of the cells that are turned on by every circle. After having processed all points in this fashion, we
analyze the accumulator array and determine the number of hits per cell. Every hit casts one vote for a point lying on
that particular circle. The cell with the maximum number of hits, m, yields the center of the circle in the spatial domain
that passes through m points. Similarly, other peaks in the accumulator array identify additional circle centers.
Tracking the points contributing to the peak in the accumulator array identifies the points lying on the circle of known
radius.
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Figure 1: Illustration of finding circles through data points. A point in the spatial domain (a) corresponds with a
circle in the parameter space (b) and vice versa. The intersection of circles in the parameter space determines
the center of the sought circles in the spatial domain. The intersection of four circles at u = 20, v = 25 identifies
points 1,2,3 and S as belonging to a circle whose center c in the spatial domain is ¢ = (20,25).

The notion of a parameter space and voting scheme have led to variations of the Hough transform, which are suited to
particular applications.

2.2. The Modified Hough Transform for Robust Parameter Estimation

The modified Hough transform is used to estimate the parameters of a mathematical model relating entities of two data
sets. In this approach, we assume no knowledge of correspondence and do not require complete conjugacy of entities.
As a result of the parameter estimation, the correspondence is implicitly determined. The method is outlined as
follows.

First, a hypothesis is generated that an entity in the first data set corresponds to an entity in the second data set. The
relation between entities of the data sets is expressed by a mathematical function, and by using the hypothesized match,
this function yields an observation equation. The parameters of the mathematical relation can be estimated
simultaneously or sequentially, depending on the number of hypothesized matches simultaneously considered. All
possible entity matches are evaluated, and the results (parameter estimations) are represented in an accumulator array.
The accumulator array will exhibit a peak at the location of the correct parameter solution. By tracking the matched
entities that contributed to the peak, the correspondence is determined.

The number of parameters being simultaneously solved determines the dimension of the accumulator array. In order to
solve n parameters simultaneously, one must utilize the number of hypothesized entity matches needed to generate the
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required » observations. However, this approach is not practical. To evaluate all permutations of entities quickly leads
to combinatorial explosion. In addition, the memory requirements of an n dimensional accumulator array create
another problem.

An alternative is to solve for each parameter sequentially in an iterative manner, updating the approximations at each
step. Consequentially, the accumulator array becomes one-dimensional and the memory problem disappears. Also, if
there are i elements in data set 1 and j elements in data set 2, the total number of evaluated entity matches becomes i,
reducing the computational complexity of the problem. After each iteration, the approximations are updated and the
cell size of the accumulator arrays can be reduced. In this manner, the parameters can be estimated with high accuracy.
This approach is dependent on the seperability of the parameters. Highly non-linear transformations have a slower
convergence rate and would require more iterations.

The basic steps to implementing the modified Hough transform for robust parameter estimation are as follows:

1. A mathematical model is established that relates the entities of two data sets (see Figure 2). The relation between
the data sets can be described as a function of its parameters: f(x;, X,...Xy).

2. An accumulator array is formed for the parameters. The accumulator array is a discrete tessellation of the range of
expected parameter solutions. The number of parameters to be simultaneously solved will designate the dimension
of the accumulator array.

3. Approximations are made for parameters which are not
yet to be determined. The cell size of the accumulator

array depends on the quality of the initial Set 1 Set 2
approximations; poor approximations will require larger \ Mathematical /

cell sizes. Model

4. Every possible match between entities of the two data F(X1, Xa,...Xn)
sets is evaluated, incrementing the accumulator array at
the location of each solution.

S. After all possible matches have been evaluated, the

maximum peak in the accumulator array will indicate the

correct solution of the parameter(s).

After each parameter is determined, the approximations are updated.

7. For the next iteration, decrease the cell size of the accumulator array, and repeat steps 2-6.

Data Data

Figure 2: Mathematical model relating two data sets.

o

3. APPLICATIONS
3.1. Single photo resection with extracted linear features

The objective of single photo resection is to determine the six exterior orientation parameters associated with an image.
The relationship between conjugate image and object points is given through the collinearity equations (Eq. 2).

xi—xp XI_XO
Vi=y,| =42 R'(w,,x)| Y,-Y, |; A... scale 2
- ¢ Z,-Z,

where (X;, y;) are image coordinates, and X,, ¥,, Z, are the corresponding object coordinates of point /.

In digital imagery extracted edges contain a large number of image points, and are often associated with characteristic
features in object space. In this application, we estimate the EOPs and establish the correspondence between extracted
image points and 3-D points along linear features in object space. The 3-D points may be acquired from a GIS
database, mobile mapping system, or as a result of digitization of existing maps or manuscripts. This technique does
not require full conjugacy of matching entities.

The mathematical model relating the two data sets is the collinearity model. For parameter estimation using the
modified Hough transform, we use an iterative, sequential approach to avoid computational complexity and memory
problems.
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An attempted match between one image point with one object point is evaluated. One match forms two collinearity
equations, allowing for the solution of two EOPs at a time. Initial approximations of the remaining four parameters are
required. A two-dimensional accumulator array is created for each pair of parameters. The cell size is chosen based on
the quality of the initial approximations. All possible pairings of image and object points are evaluated. For each
attempted match, the parameters are computed and the accumulator array is updated. A peak in the accumulator array
indicates the parameter values to be used as approximations for the next iteration. To refine the solution, the cell size
of the accumulator array is decreased after each iteration.

A possible sequence could be, for example, to solve for (X ,,Y;), (Z£,), (@, @) and (k) sequentially. It should be

apparent that the iterative technique is a more realistic approach. If we had attempted to solve all six parameters
simultaneously, we would have to evaluate every permutation of three object points matched with three image points,
leading to combinatorial explosion.

By tracking the indices of the matched entities that contributed to the peak in the accumulator array, the correspondence
between image points and object points is determined.

3.2. Automatic Relative Orientation

Relative orientation establishes the relative relationship between the images of a stereopair in such a way that it is
similar to the relative relationship of the two images at the moment of exposure. The perspective centers associated
with the images of a stereopair and a single point on the ground define the epipolar plane (Figure 3). Epipolar lines are
defined by the intersection of the epipolar plane with the focal planes of the images. The coplanarity constraint
confines conjugate points in a stereopair to lie on the epipolar plane. The relative orientation parameters can be
determined using this constraint. The coplanarity condition is utilized by constraining the normal to the epipolar plane
to be perpendicular to the image base vector. This condition is defined as follows:

(B, xp)eb =0 ©)

where p; is the vector from the perspective center of the left image to image point a;, p, is the vector from the
perspective center of the right image to the conjugate image point a,, and b is the baseline vector between the two
perspective centers of the stereopair.

Each pair of conjugate points contributes one coplanarity PCy b FC
constraint equation according to Eq. (3). At least five conjugate Eninolar Line
light rays must intersect in object space to define a stereo model. py CRRO Py

These points are selected at the Von Gruber locations. During

&
relative orientation, we solve only five out of the twelve EOPs. 2
The remaining seven EOPs are later determined through absolute
orientation which removes the datum deficiency for that particular
stereo model. Epipolar Plane
T4

The proposed technique is well suited for use with extracted
image points associated with linear features. In this case, the two
data sets are the image points from the left and right images,
respectively. The mathematical model is the coplanarity condition.

Figure 3: Epipolar geometry of a stereopair.

In empirical relative orientation, the parameters are determined sequentially by eliminating the y-parallax at the Von
Gruber locations in a particular sequence. This is due to the fact that some parameters are more sensitive to
measurements at certain locations on the image. In the iterative approach, we solve the parameters in a similar way- at
one Von Gruber location at a time, according to this established sequence.

In the iterative parameter estimation approach, each match of one point in the left image with one point in the right
image is evaluated. Such a pairing forms one coplanarity equation, allowing for the solution of one ROP at a time.
Initial approximations of the remaining five ROPs are required. A one-dimensional accumulator array is utilized for
each parameter. Every possible match of conjugate points is evaluated in the determination of each parameter. The
accumulator array is updated for each solution. The parameters are calculated in the same sequence as in empirical
relative orientation. Each parameter solution is used to update the parameter approximations for the next iteration. To
refine the solution, the cell size of the accumulator array is decreased after each iteration. By tracking the indices of the
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points that contribute to the peak in the accumulator array, the matching of image points is implicitly solved. For more
details, the reader can refer to Habib (1999).

3.3. Surface Matching

Given are two sets of points that describe the same surface. Let S; = {pi,p,...pnj be the first set, and let
S>={q1,92,-.-qn} the second set, n # m. Suppose the points are randomly distributed (no point to point correspondence).
The problem is to describe how well the two data sets agree describing the same surface.

The approach (Habib and Schenk 1999) is to compute the difference between the two sets along surface normals and at
the original point location, to avoid interpolation. Suppose now that local surface patches for S; are generated. The
simplest approach would be to create a TIN model. Let surface patch SP in S; be defined by the three points p,,pp,Pe
and let g; be a point in the second set. Then, Eq. (4) is the shortest distance between a point in the second data set and
the corresponding surface patch, as illustrated in Figure 4. If we want to impose the condition that g; lies on the surface
patch (coplanarity condition), then we have D=0 in Eq. (5).

- D
i Di+D; ¥
1 2 3
xq; yq; zq; 1
X z 1 Q)
D — pll yp[l p(l
xp, yp, 2, 1
xp, yp. 2. 1

We generalize the surface comparison problem by allowing that the two data sets S, and S, are in different reference
systems. We assume that there is a known functional relationship between the two sets but with unknown parameters.
An example would be the knowledge that the two sets are related by a 3-D similarity transformation (Eq. 6); and the
seven parameters should be determined without identical points. This situation exists when merging two data sets that
may be affected by uncompensated systematic errors. Calibrating laser systems is a classical case; here, the surface
defined by laser points from an uncalibrated system is compared with a known surface (control surface). One should
note that any functional relationship between the two data sets can be used in our proposed matching scheme. We
have:

Qtt=S.R.qi+t ©

It would be possible to solve the parameters in an adjustment procedure, using Eq. (5) as the target function. Such a
procedure would determine the transformation parameters that minimize the distance d; according to the least squares
principal. However, to compute the distance d;, a correspondence between the points g; and the surface patches must be
established. This matching problem is no longer trivial because the two sets are in different reference systems. The
proposed technique will solve the problem in parameter space.

To determine the seven parameters of the similarity
transformation, seven equations of the type of Eq. (5) are
required. Since there is no redundancy, we introduce the
condition d;=0. That is, Eq. (5) becomes the coplanarity
condition. Theoretically, we can select seven points q in set S,
and match them with all possible surface patches of S;. For
every such combination, a set of seven equations is found and
solved. The discretized solution yields those cell addresses of
the 7-D accumulator array that need to be incremented. Once
all possible combinations are explored, we select again seven
points q and repeat the procedure. The correct solution will
emerge as a peak in the accumulator array. Figure 4: Comparison of two data sets that
describe the same surface. The points of one set
The iterative approach will avoid the combinatorial explosion  are shown in relation to surface patches of
and memory problems associated with solving the parameters  another set.
simultaneously. By tracking the matches that have contributed
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to the peak in the accumulator array, the correspondence of points to surface patches is determined.

4. EXPERIMENTS/RESULTS
4.1. Single Photo Resection

To test the single photo resection using the modified, iterated Hough transform, 3-D points were measured along linear
features in a stereopair with known exterior orientation (Figure 5a). Next, an edge operator was used to detect edge
pixels in one of the images. The proposed technique was applied to estimate the exterior orientation parameters and
determine the matches between image and object points. Figure 5b shows the resulting image points that matched with
3-D object points.
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Figure 5: Aerial image with digitized linear features superimposed (a) and the matches resulting from the
algorithm (b).

In implementation, two parameters are solved at a time. Figure 6 shows the accumulator array used to solve for X, and
Y, for the final iteration. The distinct peak indicates a robust solution. Figure 6b shows the quality of the estimated
parameters and the statistics (Figure 6¢) of the experiment are also included.

Estimated Variance Component:0.236032
Xo 3102.811398m  +4.143860m

B Yo 9876.683891m  3.169007m
300

20 6520.202995m  +0.94329Sm
Omega -0.019162deg  +84.490722sec
k- Phi 1.740318deg  +121.592419sec
% Kappa 86.314970deg +29.6639%06sec
5 (b)
[=3
® Total number of image points 839
: Total number of object points 579
ke Total number of matched points 471
Percentage of matched points 81.347
(©)

Figure 6: The accumulator array for Xo and Yo (a), parameter estimation for single photo resection (b) and
statistics of experiment (c).

4.2. Automatic relative orientation

The modified Hough transform technique for automatic relative orientation was applied to a stereopair that was
acquired digitally. An edge detection operator was applied to the images, and the edge pixels were used as input to the
relative orientation algorithm. Figure 7 shows a pair of overlapping Von Gruber subimages with the resulting matched
points superimposed. Table 1 compares the results of the proposed parameter estimation technique to the traditional
manual method.
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Estimated Vanance Component 0.50118 ‘Estimated Vanance Oomponent =(.710853 |

T

. iSt. Dev.
phit = -2.640998 deg; 0.000021
kapal = 12.807528 deg| 0.000078
omega2 =  -1.104487 deg 0.000018
phi2 = ~ 1.89773 deg  0.00006: 1.552138
kapa2 =  12.236085deg 0.000076 kapa2 = = 12.630122

(2) (b)

Table 1: The estimated relative orientation parameters from the proposed method (a) and from manual relative
orientation (b).

4.3. Surface matching

The surface matching technique was tested with laser data sets provided by NASA Wallops, and aerial imagery of
Ocean City, MD flown by NGS (National Geodetic Survey). The data provide an excellent opportunity to test the
proposed procedure on a real world problem: determining how well a laser surface agrees with a photogrammetrically
derived surface.

A TIN was created using photogrammetrically derived points (Figure 8b). The laser data points (Figure 8a) were
compared to the surface of this TIN. The parameters found by our approach indicate very good agreement between the
data sets. A more meaningful check is to perform the transformation with the parameters found, followed by computing
the distance of the transformed points to the surface patches S;. The average distance of 0.03m between the laser and
stereo surface confirms the accuracy potential of both methods. Table 2 shows the results of the parameter estimation.

Figure 8: Mesh plot of laser data points (a) and the TIN points superimposed on the image of the test site (b).
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XT = 0.3996+3.439537 i(m)
YT = -0.8882 + 1.176025 {(m)
ZT = 0.028 + 0.097754 {(m)
S = 1.0016 + 0.001382
Omega = 0.0135 £ 0.000181 |(deg)
Phi = -0.0363 + 0.000332 (deg)
Kappa = 0.0977+ 0.008508 |(deg)

Table 2: Parameter estimation from surface matching algorithm.

In the area examined, a group of laser points did not correspond to any surface patch. Such points are labeled as
blunders. A closer examination reveals that the laser points are on top of a tree. The planar surface patch, determined
by photogrammetry, is on the ground. Hence, the distance from the laser points to the surface patch exceeded the
tolerance.

5. CONCLUSIONS/RECOMMENDATIONS

A new approach for matching entities in two data sets has been developed. The matching is recovered as a by-product
of solving the parameters involved in the mathematical model relating conjugate entities in the two data sets. This
approach can filter out blunders (non-corresponding entities) and prevent them from contributing towards parameter
estimation- making this a robust technique. The suggested algorithm has been used in three different applications.
First, object and image linear features have been used to estimate the exterior orientation parameters of the involved
imagery. Second, using extracted edges in a stereopair, we estimated the relative orientation parameters together with
solving the correspondence problem. Finally, this approach was used to estimate the transformation parameters
between two surfaces (for change detection and calibration purposes). The results from real data proved the feasibility
and robustness of the proposed algorithm.

Future work will concentrate on the following:

e  Efficient handling of the accumulator array,

e Applying a coarse-to-fine strategy in a way that is similar to scale space processing of digital imagery,
¢ Finding more useful applications for this algorithm.
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