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ABSTRACT 
 
Information technology is increasingly used to support civil infrastructure systems that are large, complex 
heterogeneous, and distributed. These dynamic systems include communication systems, roads, bridges, traffic control 
facilities, and facilities for the distribution of water, gas and electricity. Mobile mapping is a new technology to capture 
georeferenced data. It is, however, still not practical to extract spatial and attribute information of infrastructure objects 
fully automatically.  
 
In this article, a framework for 3D-object recognition is proposed according to a viewpoint dependent theory. A novel 
system that generates hot-spot maps using color indexing and edge gradient indexing and recognizes traffic lights using 
MCMC (Markov Chain Monte Carlo) method is proposed. The hot-spot map generation method we developed is much 
faster than general color image segmentation and thus is practical to be applied in a recognition system. In this 
approach, both top-down and bottom-up methods are combined by the MCMC engine, which not only recognizes 
traffic lights but also tells us their poses. This system is robust for different degrees of illumination and rotation. 
 

1 INTRODUCTION 

To automatically recognize 3D objects from color images is a challenging problem and has not yet been solved. The 
recognition of infrastructure objects in outdoor scenes, outside of the controlled laboratory environment, is even more 
difficult. Different methods of acquiring data and different models (e.g., active vs. passive sensor), may lead to different 
ways in which the ORS (object recognition system) is formed. We will discuss mainly the recognition of objects in a 
color image sequence is a color image sequence with georeferencing information captured by the MMS (mobile 
mapping system) (Li et al. 1999). 
 
We will try to simulate the way in which human beings interpret the scene. The stereo system that human beings use 
runs very fast and accurately, enabling them to survive in the environment in which they live. “How are 3D objects 
represented in the human visual system?” (Bulthoff et al. 1994), then becomes the major question we should ask if we 
want to produce a similar visual system. Different answers to this question will yield different model representations 
and thus lead to different approaches. There are two common answers to this question: viewpoint invariant and 
viewpoint dependent, which yield object-centered and view-centered approaches respectively. The viewpoint invariant 
answer says that people actually “store” viewpoint-invariant properties of objects in their brains that could be used to 
match with invariant properties extracted from a 2D image. In this approach, a list of invariant properties, either 
photometric or geometric, are extracted to match those rooted in 3D objects. The viewpoint dependent answer instead 
says that multiple views of 3D objects are “stored” to match 2D projections of the 3D objects. Template matching is an 
old and well-known technology that could be used in a view-centered approach. But it’s impossible to compare a 2D 
image with an infinite number of views of object using simple template matching. Dickinson et al. (1991) gave a smart 
framework of how to recognize objects through multiple views. In Bulthoff et al. (1994), the authors made a very good 
point that if an object-centered reference frame can recover objects independently of their poses, then neither 
recognition time nor accuracy should be related to the viewpoint of the observer with respect to the objects. If instead 
the model is viewpoint dependent, then both recognition time and accuracy should be systematically related to the 
viewpoint of the sensor with respect to the objects. The authors also made a conclusion from psychophysical and 
computational studies that human beings encode 3D objects as multiple 2D viewpoint representations and achieve 
subordinate-level recognition by employing a time-consuming normalization process to match objects seen in 
unfamiliar viewpoints to familiar stored viewpoints. Because matching 3D invariant properties between a 3D model and 
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a 2D scene is faster than between a number of 2D images of a 3D model viewed at different poses and a 2D scene, we 
argue here that, although the view-centered approach may be the one humans use, 3D invariant properties are still 
needed to guide visual systems in searching for the best interpretation. 

2 A FRAMEWORK FOR THE VIEW INDEPENDENT APPROACH 

Dickinson et al. (1991) proposed a model representation hierarchy that separates 3D models into a finite number of 
primitives, which are further decomposed into aspects, faces, etc. Here, we expand this hierarchy into a more general 
framework that will be consistent with most existing ORS’s. 
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Figure 1. The framework of a model representation. The process starting from layer 1, the original 
intensity image, followed by edge detection, segmentation, perceptual organization and matching is 
called the bottom-up approach. The process that works the other way around, starting from layer 6, 
the 3D model, followed by decompositions and verifications is called top-down approach. 

Figure 1 gives a general framework of model representation into which many existing 3D object recognition systems 
can be fitted. Different systems may have different connections between these various layers, leading to different 
degrees of complexity and flexibility. Dickinson et al. gives a detailed comparison of primitive complexity, model 
complexity, search complexity, etc., among different systems. It shows that the 3D volumetric primitive representation 
method had the best overall performance. 
 

3 INTEGRATING TOP-DOWN AND BOTTOM-UP METHODS FOR TRAFFIC LIGHT RECOGNITION 

In this section, we propose a system that integrates top-down and bottom-up processes by MCMC (Markov Chain 
Monte Carlo) to recognize infrastructure objects, specifically, traffic lights. The framework we discussed in section 2 is 
used in this system leading to a fast and efficient way of automatic 3D ORS.   
 
3.1 Interpretation of a scene  

Computer vision tries to understand the back-projection of 3D scene to a 2D image. Recognition of 3D objects 
appearing in 2D images requires proper models to represent 2D images and thus to match to a 3D scene. Miller et al. 
(1995, 1997) gave a basic random model to represent 3D scenes for the recognition of objects by jump-diffusion. 
Suppose we have detailed 3D models }1,{ niOi �=  that describe every possible existing object in a 3D scene and each 

of these models is parametrized by 3D coordinates, pose, etc. Any possible scene x  can be denoted as 
n
im

n
i Ox ∞

== ∪∪⊂∈ 01χ  where m is the number of occurances of each type of objects and n is the overall number of 

objects that appear in the scene. The image data could be denoted as Υ∈y  where Υ is the observation space. We then 

have the likelihood function ℜ→×•• XYL :)|( . The likelihood of y given 3D scene x , )|( xyL , is a conditional 
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probability. We can further IOP (Interior Orientation Parameter) as Ee ∈ . In Bayesian inference problems,  the 
posterior probability density is needed to estimate x  given y. The posterior probability is 

);|()(
)(

1
);|( exyLx

yZ
eyxp π=         (1) 

where )( yZ  is the probability of y . To recoginze 3D objects in 2D images, we choose the MAP (Maximize A 

Posteriori Probability) estimator which finds the x that makes );|( eyxp  the global maximum. Since each observed 

image is just the 2D projection of the 3D scene, we have NY e +ℜ×ℜ×= 23

2
χ , where 3ℜ is the 3D transformation, 

2

2eℜ is the 2D transformation in which 2e is the IOP, and N is the imposed noise. Many existing bottom-up methods try 

to find x , either implicitly or explicitly, with given data y . Among them the indexing of 3D invariants is a 

straightforward method. The Generalized Hough Transform (GHT) is another way, which tries to find the most 
significant evidence by voting in χ  space according to a given y . Direct indexing (Funt and Finlayson 1995) is 

straightforward and easy to compute. However, 3D invariants may not always exist. The Hough transform space is 
actually a rough approximation of );|( eyxp  and works only in well defined situations. The method we propose tries 

to exploit the advantages of indexing and the Hough transform for a fast approximation and then estimate x  more 
accurately using a Markov random process. 
 
3.2 Top-down and bottom-up method 

3.2.1 Description of models—traffic lights 
 
To focus on our task, the recognition of traffic lights in outdoor images, we must describe the parameters to be 
estimated in detail: (1) the type t; (2) the Illuminance of the shell, red light, yellow light and green light which will be 
denoted as ),,( BGRcs

, ),,( BGRcr , ),,( BGRcy
 and ),,( BGRcg

 respectively; (3) the Size of the primitive ),( hw . For 

each model, we will assume that each type of traffic light is made by several primitives that have identical shape and 
size; (4) the Spatial position ),,( zyx ; and (5) the Rotation angles ),,( ϕκν  in terms of X, Y and Z respectively. 
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Figure 3. Four typical types of traffic lights that 
appear the most. Generally speaking, different 
types of objects should have different parameter 
spaces to describe them. In the case of traffic lights, 
however, we have the same number and items of 
parameters for each type. 

 Figure 4. View centered coordinates system 
),,( ZYX , local coordinates ),,( ZYX ′′′ and 

occurances of traffic lights. 

 
Figure 4 shows the basic coordinates systems where ),,( ZYX  is the view centered coordinate system and 

),,( ZYX ′′′ is the local coordinate system. The reason we define the local coordinates is because  the occurance of 

trafic lights shows nice properties that meet our aspect framework in Figure1. Let ),,( ϕκν ′′′ be the rotation angles of 

the traffic lights in terms of the local coordinate system ),,( ZYX ′′′ . We may assume that 0=′ν  and 0=′κ , since 

traffic lights are always hung perpendicular to ground, and that the rotation angleϕ′  is close to one of the four major 

aspects, πππ
2

3
,

2

1
,0 and . Suppose the probability distribution of ϕ′  is the summation of four Gaussian distributions. 

We thus obtain the prior probability of ϕ′  as 
Z

f
p
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and  ∫ ′′=
π

ϕϕ
2

0
)( dfZ . Let ),,( 111 ϕκν  be the rotation angles of the local coordinate system in terms of the view 

centered coordinate system. We can compute ),,( ϕκν by ννν ′+= 1
, κκκ ′+= 1 , and ϕϕϕ ′+= 1  where ν ′ and κ ′  

could be approximated as 0. However, ),,( 111 ϕκν can be solved by the vanishing points detection method, which will 

be discussed in the next section. 
 
3.2.2 Vanishing point detection 
 
As we stated above, it’s important to know ),,( 111 ϕκν  to compute ),,( ϕκν . It is well known that a set of parallel lines 

in a 3D scene generates a set of lines in a 2D image that converge to a single point, called the vanishing point. Although 
an infinite number of parallel line sets exist in a real scene, in mobile mapping imageries, the dominant directions are 
along ),,( 111 ϕκν . Due to this fact we may derive ),,( 111 ϕκν  by extracting the vanishing points in a single image. 

As stated in Lutton et al. (1994), let ),( uuU φθ
&

be the direction of a vanishing point direction in the Gaussian sphere and 

),( iiiN φθ
&

be the norm of a surface that passes through the origin of the Gaussian sphere and two extremes of straight line 

segments. Since we know that 0=•UNi

&&
, we have 0coscossinsin)cos( =+− uiuiui φφφφθθ . We omit the detailed 

algorithm due to space limitations. 
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(a) (b) (c) 
Figure 5. Vanishing points detection algorithm applied in both the color image and gray image, (a) 
Vanishing point geometry and the corresponding Gaussian sphere, (b) A color image of size 720X400, (c) 
Voting space of ),( uu φθ  generated from the straight lines extracted in (b). 

 
We tested this algorithm on many images (both color and gray value) and we found it to be robust under different 
circumstances. The directions of ),,( 111 ϕκν can be easily computed from a single image. 

 
3.2.3 Overall method 
 
The framework we discussed in section 2 is applied in the recognition of traffic lights. A traffic light consists of several 
primitives with four major aspects, which can be determined by the vanishing points detection method discussed in 
3.2.2. We tested several color image segmentation methods. They were found to be time-consuming with results that 
were not good enough for further processing. To make our algorithm practical, we developed a new method that 
integrates bottom-up and top-down methods. The basic strategy is stated below. 
Bottom-up approach 
• Edges are detected from the color image. 
• ),,( 111 ϕκν  are computed using the vanishing points detection algorithm. 

• Different aspect images of primitives are used as templates in histogram filtering to compute the hot spot map at 
different scales. 

• The Minimal Risk Signal detection method is used to derive the hot spot map as a typical signal detection problem 
with one image used as a training set. 

• Image pieces that contain hot spots are extracted. 
Top-down approach 
• Markov Chain Monte Carlo method is used to recognize traffic lights and to get the best estimations of parameters 

that describe each traffic light. 
 
3.2.4 Histogram filtering 
 
For many years, researchers have been trying to recognize objects in color images using color and geometric invariants. 
Swain and Ballard (1991) initiated a new method called “color indexing” that actually compares histograms of a given 
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image with those of an object stored in a database in black-white, red-green and blue-yellow spaces.  To capture more 
invariant information, Funt and Finlayson (1995) used the Laplacian and the four directional first derivatives to 
convolve with the color image and compute the histogram again.  Slater and Healey (1996) used local color pixel 
distributions instead of the whole image to recognize objects.  The local color invariants are important to us because we 
only want to extract those hot spots that are most likely to be traffic lights. To avoid the use of any segmentation 
method, we developed a new algorithm that captures both photometric and geometric invariants to get hot spot maps 
using histogram filtering. The algorithm is as follows: 
(1) The original color image in (R, G, B) space is transformed into *** ,, vuL  space (Wyszecki and Stiles, 1982) to 

achieve the equal distance propety. 
(2) Several 2D image templates, niIi �1, = , are generated as 2D projections of traffic light primitives at major 

views. 
(3) Color template images niIi �1, =  are transformed from (R, G, B) to *** ,, vuL space and histograms are 

computed as ∑
∈

−=
iIs

L
i sLj

Z
jH ))((

1
)( *)( *

δ  where j is each bin value in the domain of *L , ()δ  is the Dirac delta 

function, and Z is the normalization term such that  1)()( *

=∑
j

L
i jH , ∑

∈

−=
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u
i suj

Z
jH ))((

1
)( *)( *

δ  where j is each 

bin value in the domain of *u , and ∑
∈

−=
iIs

v
i svj

Z
jH ))((

1
)( *)( *

δ  where j is each bin value in the domain of *v . As 

for geometric invariants, an edge map is obtained using the color edge detection method in Lee and Cok (1991) at 
0.1=σ . A large scale factor is not satisfied because the aspect image is small. The image showing edge pixel can 

be denoted as 




=
otherwise

pixeledgeaniss
sI E

i 0

1
)( . The histogram of gradients of edge points is computed as 

∑
=∈
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E
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sgj
Z

jH δ  where j is each bin value in the domain of discrete gradients values, )(sg is the 

gradient at s , and Z is the normalization term so that  
(4) Three square windows that have different sizes, that is, under different scales, are moved convolved with the 

image. Let )(1 sW ′ , )(2 sW ′  and )(3 sW ′ be three windows centered at pixel s′ . The histogram of each window 

centered at every pixel is computed by ∑
′∈
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)( δ . The histograms are actually 

Probability Distribution Functions (PDF) that describe the distributions of *** ,, vuL  and edge gradients. The 

overall measurements of the similarity between )( *L
iH  and )(

)(

*L
sWi

H ′
,  the similarity between )( *u

iH  and )(
)(

*u
sWt

H ′ , and the 

the similarity between )( *v
iH  and )(

)(

*v
sWt

H ′
 tell us how likely the template iI  appears at s′  with size of tW . Let the 

overall photometric similarity be 222 ),(),(),(),(
***

tiDtiDtiDti vuL ++=!  where the distance between two 

PDF’s, ),( tiD , may be computed by ∑−=−=
j

titi jpjppptiD ))(),(min(1|1),( . Other methods, such as 

Kullback-Leibler divergence, also could be used to compute the distance between two probability distributions. 

(5) The geometric similarity  is computed by ),(),( tiDti E=�  where the distance between two PDF’s are obtained 

the same way as defined above. 
 
(6) We will use the derived similarity map to determine the possible hot spots. One approach would be to use a 

thresholding method, with every value that is larger than a fixed threshold set to 1 and every one that is smaller set 
to 0. However, it is difficult to select the proper threshold. Here, rather than just thresholding, we will approach this 
problem as a typical signal detection problem in which the noise or signal is determined in terms of some criteria 
using their probability distributions. With this method, the system could be trained with training data. Again, we 
omit the details due to space limitations. 
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Figure 6. Pdf function of signal vs. noise and the hot spot map for one color image, (a) pdf 
function of noise, (b) pdf function of object signal, and (c) hot spot map. 

 
We pick up those pixels that appear in samples as object signals and treat all the others as noise so that we have their 
PDF’s as shown in Figure 6. With this method, it is straightforward to generate an object signal map where the dark 
pixels mean object signal and the bright pixels mean noise. By cominbing these maps at different window sizes and 
different aspects, we obtain the final hot spot map. This hot spot detection algorithm is robust over different levels of 
occlusion and illumination.  
 
3.2.5 Traffic light recognition by MCMC in the Top-down approach 
 
Figure 6 (c) shows the final hot spot map from which the candidate regions may be extracted. We here make the 
assumption that traffic lights showing up in the image don’t have any occlusion. This assumption allows us to extract 
several rectangular pieces of image, each of which encloses a connected hot spot region. The size of every piece of 
image may be larger than its enclosed region because initially we do not know the exact position and size of the traffic 
light in the image. The remaining step is to work on every piece of image in which traffic lights are recognized with the 
best-fitted parameters. 
 
Given every piece of imagey and IOP parameters e , we want to find the x that maximizes the posterior probability 

);|( eyxπ . In this case, traffic lights are generally imaged with the sky as the background and we can assume a simple 

Gaussian distribution of the background pixels. Suppose the parameterx is composed of [t , ),,( BGRcs
, ),,( BGRcr , 

),,( BGRcy
, ),,( BGRcg

, ),,( ooo zyx , ),( hw , ),,( ϕκν ] with each term defined as in 3.2.1. In Ullman and Basri (1991), 

the authors proved that the perspective projection of a 3D object, when viewed from some distance, could be 
approximated by an orthogonal projection. We also assume that 0=ν  and 0=κ , which are true in the real scene. 
These requirements could be met in our cases reasonably and the parameters may be simplified to [t , ),,( BGRcs

, 

),,( BGRcr , ),,( BGRcy
,  ),,( BGRcg

, ),( II yx , ),( hw ,ϕ ], where ),( II yx  are the 2D coordinates of the center of the 

traffic light in an image piece. Let ),( exF  be the orthogonal projection of a traffic light paramterized by x . Let 
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variances respectively. The likelihood is 
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The log likelihood becomes 
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where g is a constant value which equals ∑
= *** ,

)(
)

2

1
log(

vanduLc
c

m
σπ

 where m is the number of pixels in y . The 

posterior distribution then becomes  
( ) BexyLxeeyxp /);|(log())(log();|( +∝ π         (5) 
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where B is the so called “temperature” used for annealing. The introduction of B won’t change the *x that maximizes 

the posterior probability because the exponentional function is montone. We note here that )(xp is exactly the well-

known Gibbs distribution, which was originated by Geman and Geman (1986). We may rewrite the above equation as 
BxHeeyxp /)();|( −∝            (6) 

where )));|(log())((log()( exyLxxH +−= π  is the energy function. We could simply denote it as BxHexp /)()( −= . 

The Metropolis sampler, specifically the Metropolis-Hastings method, is used here to find the solution to the MAP. The 
basic Metropolis sampling method is stated in Winkler (1995): 

(1) A new configuration 2x is proposed by sampling from a probability distribution ),( 1 ⋅xG on X  where ),( 1 ⋅xG  is 

called the proposal matrix. 

(2) The energy at 2x  is computed and is compared with that at 1x  

(a) If )()( 12 xHxH ≤ then 2x is accepted. 

(b) If )()( 12 xHxH > then 2x is accepted with the probability )/))()(exp(( 21 BxHxH − . 

(c) If 2x is not accepted then 1x  will be kept. 

The transformation matrix ),( 21 xxπ becomes  
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It can be proven easily that ),()(),()( 122211 xxxpxxxp ππ = , which meets the requirement for the convergence of a 

Markov Chain. This so-called detailed balance equation is crucial because it insures that the Markov Process is 
reversable. A more efficient implementation of the Metropolis algorithm is the Metropolis-Hastings algorithm whose 
Markov transformation matrix can be derived by 
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xxGxp
xxA .        

It is trival to prove the convergence of the Markov random process, ),()(),()( 122211 xxxpxxxp ππ = . The important 

thing remaining is to generate proposal matrix ),( 21 xxG . As we stated before, traditional methods like the Generalized 

Hough Transform, which uses voting for a solution x , may or may not produce the MAP for the given image y . To 

take advantage of both the speed of the GHT, and the ability of MCMC to search for globally optimal solution, we use 
the result of the GHT as the proposal matrix ),( 21 xxG . The voting space of GHT actually gives a distribution of every 

possible parameters. 
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(c ) Energy curve along 
MCMC of (a) and (b) 

(f) Energy curve along 
MCMC of (d) and (e) 

(i) Energy curve along 
MCMC of (g) and (h) 

(l) Energy curve along 
MCMC of (j) and (k) 

Figure 7. Original image pieces with the recognized traffic lights and the energy curve along MCMC. We can see 
the nice match between the original images and the imposed 3D object. In (c) it takes around 2 minutes to reach the 
final status. In (f) it takes one and a half minutes. It takes just less than one minute for (i) and (l) to reach the final 
steps. These image pieces were extracted by the algorithm we proposed in 3.2.4. 
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4 CONCLUSIONS 

In this article, a framework for 3D-object recognition was discussed. Within this framework, we proposed a novel 
system that integrates bottom-up and top-down approaches by Markov Chain Monte Carlo to recognize traffic lights in 
real image sequences taken by the Mobile Mapping System. It takes fifteen minutes for the system to recognize the 
objects in a color image of size 720X400 starting from the low-level processing. The results are promising and this 
novel system shows the great potential of using the Markov Chain Monte Carlo method for recognizing 3D objects. In 
this combination of bottom-up and top-down by MCMC, we combined traditional techniques such as indexing and the 
Generalized Hough Transform together to show that they could be nicely integrated in random processes. Due to space 
limitations we have shown here only the major ideas and omitted many details. 
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