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ABSTRACT

In this paper we describe a new concept for the reconstruction of buildings. In contrast to most of the published ap-
proaches, we link the reconstruction process with the building interpretation. With this linkage we want to enhance the
reconstruction result and to yield semantic information about the buildings. We introduce building models based on their
topology. We also may use data from different sensor types. The analysis is done locally using statistical building infor-
mation for the interpretation in a Markov-Random-Field and using e. g. geometric or radiometric “appearance” models
for the reconstruction. A real data example from laserscanner observations demonstrates the approach.

KURZFASSUNG

In diesem Artikel beschreiben wir ein neues Verfahren zur Rekonstruktion von Gebduden. Im Gegensatz zu den meisten
in der Literatur bereits veroffentlichen Verfahren, verbinden wir die Rekonstruktion mit der Interpretation. Dadurch
verbessern wir das Ergebnis der Rekonstruktion und erhalten zusitzlich semantische Information iiber das Gebdaude. Wir
verwenden ein Gebdudemodell, das auf der Topologie der Gebdude definiert ist. Auserdem ist die Integration von Daten
unterschiedlicher Sensortypen moglich. Die Analyse der Daten erfolgt bei der Interpretation mit lokalem statistischen
Gebdudewissen und bei der Rekonstruktion mit lokalen Modellen der “Erscheinungsform” der Gebédude (z. B. geometrisch
oder radiometrisch). Ein Beispiel mit realen Entfernungsdaten demonstriert den Ansatz.

1 INTRODUCTION

In this paper a new concept for the reconstruction and interpretation of building data is introduced. We present an approach
for multi sensorial building data analysis which combines reconstruction and interpretation.

1.1 Motivation

Since a few years a large demand for urban and suburban 3D data can be recognized. Various applications need 3D data for
planning. Others need 3D data as background information for visualization and analysis. There is an increasing number
of applications (from GIS) who ask for interpreted data, which allow the application to distinguish between important and
non-important parts of urban data.

Although some approaches for building reconstruction have been presented in the last years, only a few approaches are
able to use different sensor types, mainly as different parts of a specific work flow, e. g. Haala and Brenner (Haala and
Brenner, 1997) starting from map data adding laser-scanner data they reconstruct buildings. Others just use data of one
sensor type (Brunn and Weidner, 1997, Haala and Brenner, 1997, Vosselmann, 1999, Baillard et al., 1999, Moons et al.,
1998). Fischer et. al. (Fischer et al., 1999) have described on a conceptual level a tower of feasible algorithms which
could be used for the reconstruction of buildings in general. Multi sensorial reconstruction and interpretation is important,
because different data from different sensor types can support the reconstruction result from different aspects. Only with
sensor fusion it becomes possible to use the new developed aerial sensors like laser-scanners, digital cameras or three-
lines-cameras together. In this paper, an algorithm for the use of different sensor types is described. All sensor types are
handled in an equal manner, no one dominates the algorithm.

In most of the published algorithms for building reconstruction interpretation is done only as a side step. The interpretation
is mostly done by classifying the type of geometric structure of the reconstruction. Mostly information of classifications
of the neighborhood is not used. Except Lang (Lang, 1999) achieves some semantic interpretation, considering geometric
classifications from the neighborhood.
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Figure 1: Work flow of the combined interpretation and analysis.

1.2 Overview

Here we assume that the problem of detecting buildings in an arbitrary 2D data set is already solved. A detection procedure
based on bayesian nets can be found in (Brunn et al., 1998). For each building the detection algorithm gives a bounding
polygon which encloses the complete building.

Starting from the subparts of several data sets the work flow is a follows (cf. fig. 1): From the selected part of the data of
some not necessary all sensor types we generate an approximate description of the building, which is a graph representa-
tion and contains the topology of its surface. We choose the topology of the surface graph as the base representation of the
building because the topology is independent of the used sensor type (cf. sec. 2). Each graph element is connected to a set
of appearance models (e. g. geometric coordinates or attributes or radiometric attributes). Further steps of reconstruction
and interpretation optimize the graph representation including the attributes. Ideally interpretation and reconstruction
should be done in a common step. We approximate the common step by iterating separate steps of interpretation (cf. sec.
3) and reconstruction (cf. sec. 4).

The paper closes with some conclusions and an outlook on further research (cf. sec. 6).

v e v

e f e

v e v L4

(a) The polymorphic graph of one side of (b) Polymorphic graph of the simplex (c) Simplices are the basis elements of the

a cube (v=vertex, e=edge, f=face). representation of one side of a cube simplicial complexes (v=vertex, e= edge
(v=vertex, e=edge, t=triangle) and t=triangle).

Figure 2: Representations of topology.

2 MODELING BUILDINGS BY THEIR TOPOLOGY
2.1 CW-complexes

We introduce CW—complexes (Jdnich, 1994) as a representation of the topology of buildings. The building surface can be
divided in corner, bounding edge and faces. The corner are called O-cells, the edges 1-cells and the faces 2-cells (0, 1 and
2 are the degree of the cells). They are handled as open sets, which means that the union of all points, edges and faces
yields the complete surface, the intersection of all pairs of elements is empty.

We define a graph whose vertices are all cells of the three types and whose edges show neighborhood relations: Two
cells are neighbored if the cell of lower degree is the border of the cell of higher degree. The neighborhood relation is
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symmetriced. We call the resulting graph a polymorphic graph (Fuchs and Forstner, 1995). In figure 2(a) the polymorphic
graph of one side of a cube is shown. The graph of the complete cube consists of eight O-cells, twelve 1-cells and six
2-cells.

2.2 Simplicial complexes

CW-complexes are a very general method to describe topology, esp. they are not limited to a number of cell types.
Simplicial complexes can be viewed as a specialization of the CW-complexes, where 2-cells are triangles. The basis
elements of this representation are called simplices. They are shown in figure 2(c) up to order two. On the one hand
the simplification of the complexity of the topological boundary polygon to just three sides limits the complexity of the
2-cells. On the other hand it provides an easy access to the shape of the 2-cells. Analogously to the CW-complex we
define a polymorphic graph on the simplices. Figure 2(b) shows the polymorphic graph of one side of a cube in simplex
representation. Simplicial complexes are widely used in the approximation of triangulated surfaces: e. g. Halmer et
al. (Halmer et al., 1996) use simplicial complexes for the approximation of surface models, but they stick to geometric
triangles of a triangulation of the surface. In the following we focus on simplicial complexes.

3 INTERPRETATION

In our context interpretation means classification of the simplices of the building representation by complexes. In the two
step scenario of separate interpretation and reconstruction the interpretation links the observations with the reconstruction
(cf. fig. 3). Knowing the likelihood functions the classification can make use of the observations.
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Figure 3: Principle of classification and reconstruction paradigm.

3.1 Principle

The interpretation is done by classification using statistical models, which need to be known a priori or automatically
learned (cf. sec. 3.3). To find a final classification means to search for a set of classes which have a maximal probability.
To reduce the complexity of this problem, which in general is exponential in the number of possible classes for each
random variable, we assume only local dependencies between neighboring random variables. Therefore we only need
local statistical models.

We establish a Coupled Markov-Random-Field (CRF) (Li, 1995), which consists of three random-fields, one for each
simplex type. This is equivalent to associate a random variable s to each node of the polymorphic graph, which represent
vertices, edges and triangles,

v,e,t =+ s
The classes for possible classifications are explained in the next section.

Inside the CRF each random variable s; is classified. This is achieved by finding that class which leads to the maximal
probability for the random variable s;.

§; = argmax P(s;)

The probability distribution P(s;) is deduced using Bayes’ Theorem

P(sily;) o< P(y;|si) P(si)
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with y; being a vector of observations. P(y;|s;) is called likelihood function and P(s;) prior distribution. Thus we are
able to connect different probability distributions. Here we use the Bayes’ Theorem by introducing background knowledge
0s; about the random variables in some neighborhood of s; (markovinity) (Koch and Schmidt, 1994)

P(s;]y;, 0si) < P(y;|si, s;) P(si]|0s;).

Further on we assume that the likelihood function only depends on the random variable s; itself, not on the neighboring
random variables

P(y;lsi, 0si) = P(y;lsi)-
Therefore eq. 1 changes to
P(sily;; 0si) o< P(y;|si) P(si]0si) M
where the distribution P(s;|0s;) inherits the information about the building model.

The theory of Markov-Random-Fields states that the local classification (cf. eq. 1) leads to a maximal probability of the
complete random field. We calculate the probability of the classification of the complete random field by

$ = P = P(s;|ly;, 0si),
§ = max (sly) Hmlax (sily;, Osi)

because in this application each subset of random variables is considered only once for local classification (Koch and
Schmidt, 1994). Therefore, if the building type is unknown and from a set of building models M with M = {M;]|:
€ {1,...,np}}, the maximization can be done for each building type. Then the maximum of all probabilities of the
different building types gives the type of the complete building

M = max P(3(M)]y).

3.2 The building model

We use simplicial complexes, which consist of 0, 1 and 2-simplices, to represent the topology of the surface of buildings.
Each simplex is associated with some appearance attributes, which could be e. g. geometric or radiometric. The simplices
should be classified. Therefore we define classes for each simplex type.

We look at the classes of the simplices of the real building parts from different views (cf. fig. 4): at first we describe
a semantic model which will be generalized to a geometric!. A semantic class scheme could consist of the following
classes:

e (-simplices: eaves corner point, ridge corner point, ground-plane corner point, eaves point (point on the eaves, not
corner point), ridge point, ground-plane point, point on a wall, point on the roof and point outside the building in the
ground-plane

e [-simplices: eaves edge, ridge edge, ground-plane edge, corner edge (mostly nearly vertical), edge in the roof, edge
in a wall, edge outside the building in the ground-plane

e 2-simplices: face in a wall, face in a roof, face in the ground-plane
In this paper we generalize to the following geometric model:

e (-simplices: corner point (CP) (on the border of a least three building planes), edge point (EP) (on the border of two

building planes), face point (FP) (inside one plane of the building)

e I-simplices: breakline (BL) (intersection of two building planes), face edge (FE) (inside one building plane)

e 2-simplices: vertical (V), oblique (O) and horizontal (H) face
The definition of local neighborhoods enables us to do local classification. We define different kind of neighborhoods for
the three simplex types which are shown in fig. 5. Different building types are modeled by sets of conditional probabilities

which coincide with the neighborhoods. For each building type the following chosen conditional probabilities have to
known are priori or have to be learned (cf. sec. 3.3)*:

' We use the notion “generalized” because the capability to distinguish between different objects in the geometric modeling is less than in the semantic
modeling. Also the number of classes is reduced in the geometric model. 2 Notation: # means the “number of”.
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Figure 5: Neighborhood system for vertices, edges and triangles in the Markov-Random-Field.

e Conditional probability for O-simplex classification: the classification of a 0-simplex depends on the number of
breaklines and the number of corner points in the neighborhood

Py (1| #BL(v), #CP(v)).
With the assumption that the conditional probabilities can be separated,
Prr(Ly|#BL(v), #CP(v)) = Puy(ly|[#BL(v)) - Pu(ly|#CP(v)) 2)
follows.

e Conditional probability for edge classification: the classification of a 1-simplex depends on the classifications of the
neighboring faces, neighboring vertices and the number of other breaklines bounding the neighboring faces

PM(ZG | {lfl (e)vlfz(e)}v{lpl(e)vlpz(e)}v#BL(e))
We assume separability of the conditional probability:
PM(le | {lfl(e)vlh(e)}?{lpl (6)71172(6)}7#3[’(6))
= PM(le |{lf1 (6)7 lf2 (6)}, {ZZM (6)7 lp2 (6)}) . PM(lel#BL(e)) (3)

e Conditional probability for triangle (face) classification: The classification of 2-simplices depends on the number of
breaklines bounding the 2-simplex.

Pu(lg|#BL(f)) “4)

We assume the likelihood function as independent of the building type. Therefore, we just have to define one set of
likelihood function for each combination of each simplex with each data type or, of course, a joint likelihood function for
all data types, which is mostly not practicable. These functions P(y|s) transfer the observations y into probabilities for
all classes of each random variable. Assuming a normal distribution for a observation vector y, a likelihood may have the
following form

Pluls) = ()" (et By exp (~ 50 - X872 (v - X8,))

The vector 3 is a class specific parameter vector, X a matrix of linear coefficients and X the matrix of covariances of the
observations.

International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B3. Amsterdam 2000. 121



Ansgar Brunn

3.3 Learning

The models of the different building types M are learned automatically. For this purpose a set of interactively classified
simplicial complexes could be evaluated, yielding relative frequencies or empirical probabilities. Here another approach
is used: we learn building models from just one representative classified example for each building type. Of course the
deduced probabilities are less precise, however it takes less effort.

3.4 Classification

There is large variety of algorithms for optimizing MRFs available. We choose the Iterated-Conditional-Modes (ICM)
(Li, 1995), because firstly we get from a initial likelihood estimate - just using the likelihood function - a good initial
classification. Secondly the influence of a local classification on not neighboring random variables is quite low. During
some iterations of classification we find a optimal solution, iterating until only minor changes occur in the classification
of random variables. The number of interactions depends on the amount of noise in the data.

4 RECONSTRUCTION

After the interpretation step the appearance of the building is corrected (cf. fig. 3). The correction takes the classification
result into account and uses local appearance models for each simplex. In case of geometric attributes, the coordinates of
the corner of building description are corrected according to the geometric classification.

We use robust Least-Squares-Estimators which enable us to handle outliers in the data and wrong classifications of the

previous step.

5 EXAMPLE

We use a laserscanner dataset to demonstrate the feasibility of the approach. Figure 6 shows a dense grid-based laserscan-
ner data set. We want to reconstruct and interpret a flat roof building. Therefore we learn the conditional probabilities of
an chosen example of a flat roof building (FR). The learning yielded the following conditional probabilities:

e Vertices (cf. eq. 2):
0.25 0.25 0.25 0.25

Prr (l|#BL(v)) = ((PFR (ly = jl#BL(v) = k))jk) = 0 0 1 0
0 0 0 1

0.25 0.25 0.25 0.25
PFR(ZU|#CP(U)):((PFR(ZU:j|#CP(v):l))jl) - 0 05 05 0
0 1 0 0
with
je{FP,EP,CP} and k(l€{0,1,2,>3)}
e Edges (cf. eq. 3):

Prr(le | Al (e)lpa(e)}s {li(€), 12 (€)})

= ((PFR((ZE =BL,l, = FE)|{1P1(6)71P2(6)} = la{lfl(e)vlfz(e)} = k))lk)
(0.5,0.5) (0.5,0.5) (0.5,0.5) (1,0)  (0.5,0.5) (0.5,0.5)
(0.5,0.5) (0.5,0.5) (1,00 (0.5,0.5) (0.5,0.5) (0.5,0.5)
B 0,1) (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5)
= 0,1) (05,05  (L0o)  (0,1)  (0.5,0.5) (0.5,0.5)
(0,1)  (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5)
(0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5)
(1,0)
(0.44, 0.56)
Prr(L#BL(e)) = ((Pra((l. = BL,L. = FE)#BL(e) =1)),) = | (0.17,0.83)
(0,1)
(0.5,0.5)

122 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B3. Amsterdam 2000.



Ansgar Brunn

Figure 6: Part of a digital surface model interpolated from laserscanner data with grid width 0.6 x 0.6m? (Copyright by
TopoSys, Ravensburg). The heights are coded in greyvalues.

with
i € {{CP,CP},{CP,EP},{CP,FP},{EP,EP},{EP,FP},{FP,FP}},

ke {{HH},{H O0}{HV}{V,V},{V,0},{0,0}}  and 1€{0,1,2,3,4}

e Triangles (faces) (cf. eq. 4):

0.33 053 0.13 0

PFR(lf|#BL(f)):<(PFR(lf:j|#BL(f):k))jk) - 0.025 8(2;2 ggg 0.35

with
J€{H,0,V},ke{0,1,2,3,4}
The likelihood function is defined a priori. We classify introducing the approximate surface and not on the original data

as observations, to reduce the complexity of handling observations in the likelihood function. We choose the following
deduced observations:

e for O-simplices (vertices): the number of normals of touching triangles. For each number of possible amounts of
normals a description-length (Rissanen, 1987) is calculated and transformed into a probability.

e for 1-simplices (edges): the number of normals of touching triangles (cf. 0-simplices).

e for 2-simplices (triangle): the difference angle to the vertical axis.

(a) Approximated building surface with the result of the initial (b) Result of the interpretation and reconstruction. Only
classification coded in intensities. those simplices are shown which are necessary for the ge-
ometric description.

Figure 7: 3D views: Each greyvalue of vertices, edges and triangles represents a classification.
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From a preprocessing, which is based on the feature extraction (Fuchs and Forstner, 1995) of the DSM, we get the
geometry of the approximate building description (cf. fig. 7(a)). The a priori likelihood estimate leads to the shown simplex
classification. The misclassification of a least one face is obvious. The iterative process of classification and reconstruction
results in the building shown in fig. 7(b). Only essential simplices are shown in the visualization. Misclassifications and
the geometry of the surface have been corrected automatically in this second step.

We found that the error tolerance of the approach is quite high, which is also known from MRFs in general. Correction of
single misclassification could be done, but regions of false classifications cannot be corrected due to the defined low sizes
of the neighborhoods.

6 CONCLUSIONS AND OUTLOOK

This article presents a new approach for automatic analysis of multi sensorial data. The integration of interpretation and
reconstruction in a common algorithm was a major goal. A new structure for the representation of buildings based on their
topology was introduced. The example shows the correction capability of the local classification and local reconstruction.

In future research, the integration of changes in topology during the classification has to done. The implementation and
modeling should be extended to CW-complexes. For an empirical evaluation of the approach, additional models, large
datasets and additional sensor types have to be covered.
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