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ABSTRACT 
 
A novel approach to semi-automated road centerline extraction from remotely sensed imagery is introduced. Providing 
inspiration is Kohonen’s self-organizing map (SOM) algorithm. With IFOV < 2m, road features are open to region-
based analysis. A variation of the basic SOM algorithm is implemented in a region-based approach to road vectorization 
from high spatial (1.0m) and spectral resolution imagery. Using spectrally classified road pixels as input, centerline 
nodes are located via cluster analysis of the local density fluctuations in the input space. Linking the self-organized 
locations of the nodes with a minimum spanning tree algorithm provides global topological structure, which is 
subsequently refined. The idea is use contextual analysis from which to derive optimum topology. The result is a 
vectorized road centerline network suitable for direct GIS database population. Preliminary results demonstrate the 
algorithm’s potential for robust vectorization when presented with noisy input. 
 
 
1 INTRODUCTION 
 
Road network extraction ranks among the most fundamental of image analysis operations in support of many GIS 
applications. A complete road extraction task entails a raster-to-vector conversion, which is basically a lossy signal 
compression operation whose objective is to derive compact geometrical representations for raster features. A primary 
goal within the Image Understanding (IU) community is the minimization of human effort required to vectorize roads 
(among other features) from images when populating GIS databases. Despite substantial IU advancements with 
automated feature extraction techniques over the years, the population of geospatial feature databases remains in large 
part a costly manual process. With a growing variety of next-generation imaging platforms offering enhanced spatial 
and spectral resolutions, more robust extraction tools will play a larger role in improving future productivity. With 
IFOV < 2m, most road features are not characterized as single raster edges. Rather, they manifest as elongated regions, 
a.k.a. ‘ribbon’ features, and as such become subject to region-based analysis in addition to (dual) edge analysis. 
However, an inherent dilemma with high spatial resolution is the potential for a decrease in local signal-to-noise ratio, 
and therein lies the trade-off for higher geometric accuracy. The goal of this paper is to investigate the use of self-
organization methods for robust raster-to-vector conversion of road centerlines from high spatial and spectral resolution 
imagery. 
 
Road extraction algorithms are often categorized according to their degree of automation. Most prevalent are the semi-
automated methods, which attempt to strike a synergistic compromise between human and machine. Semi-automated 
methods are further divided into two broad categories. The first includes line-following methods, in which local 
exploratory image filters sequentially trace a minimum cost path from one point to the next (Mckeown and Denlinger, 
1988; Vosselman and Knecht, 1995). The second group includes active contour models, i.e., snakes (Kass et al., 1988), 
which are adapted for 2D and 3D road extraction (Trinder and Li, 1995; Neuenschwander et al., 1995; Gruen and Li 
1997). Snakes are fundamentally edge-based curvilinear feature extractors that are distinct from line-following in that 
they exemplify ‘simultaneous’ curve-fitting as opposed to sequential. Notwithstanding, either method is considered 
semi-automatic owing to their requirement of user provided seed point inputs. On the other hand, fully automated 
methods attempt to completely circumvent user intervention during the extraction process. A considerably more 
rigorous approach, it usually requires a skillful integration of contextual information and a priori knowledge into the 
road extraction task (Mckeown et al., 1985; Baumgartner et al., 1999). Still, a basic concern of fully automated methods 
is limited generalization ability, particularly as a priori knowledge becomes more specialized with scene complexity. 
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This paper presents a semi-automated clustering-based approach to road centerline vectorization from high resolution 
imagery that represents a variation of Kohonen’s self-organizing map (SOM) algorithm (Kohonen, 1997). The 
neurobiologically inspired SOM algorithm belongs to the unsupervised learning (clustering) variety of artificial neural 
networks (ANN). While cluster analysis is often used as a form of unsupervised spectral classification, the interest here 
is to use cluster analysis to find and map spatial structure within spectrally classified road pixels. The spectral 
classification step is what renders the method semi-automated. Beyond this, we assume that no ancillary cartographic 
information is available, e.g. DEM or coarse-resolution vectors. From a binary image of spectrally classified road 
pixels, localized road centerline nodes are mapped via an iterative clustering method. The nodes self-organize according 
to the local density fluctuations of the input, and global structure is provided by linking cluster centers with a minimum 
spanning tree (MST) algorithm. The MST cost function incorporates global cluster statistics to deal with image noise. 
The subsequent tree structure is densified and pruned locally as needed, and candidate loops are closed where 
appropriate. Finally, nodes are ordered for topological consistency, and a vectorized road network is available for direct 
GIS database entry. Since clustering exemplifies a local center-of-gravity approach, it is not sensitive to edge definition 
of road features, and allows for more meaningful exploitation of multispectral imagery versus edge-based methods. 
 
 
2 METHODS FOR SELF-ORGANIZATION 
 
Cluster analysis is a basic method of self-organization. It describes a regression solution that optimally partitions an m-
dimensional input space containing a set of N vectors, P = {X1, X2,…, XN}, where Xi = [x(i, 1), x(i, 2),…, x(i, m)]

T ∈ ℜm, into 
a representative set of K cluster centers, or “codebook” vectors, C = {W1, W2,…, WK}, where Wi ∈ ℜm. Each Wi 
represents a single “codeword” in the codebook, and in general K << N, where K must be prespecified. Cluster analysis 
is sometimes referred to as vector quantization (VQ). Usage of the latter term is generally associated with signal 
compression, and the former with pattern recognition. In the present context, we are interested in aspects of both. In 
(Linde et al., 1980) an important distinction is drawn between aspects of cluster analysis and VQ concerning the 
intended application. For example, one application may require the design of a vector codebook from a set of training 
vectors, which are subsequently fixed for use in quantizing (classifying) new vectors outside of the training set, e.g., test 
vectors. In contrast, another application may use the codebook only for purposes of pattern detection within the training 
set; i.e., the training set is the entire set. Our road extraction strategy is an example of the latter, where the 
dimensionality of the input vectors is m = 2 for (x, y) pixel coordinates. 
 
2.1 Iterative Optimization 
 
Iterative optimization is the most widely used approach to cluster analysis. The basic idea is to iteratively adjust a set of 
initialized K codebook vectors in such a way as to globally improve a criterion function, e.g., sum-squared-error (SSE). 
The limitations associated with this “hill-climbing” technique include a guarantee of only local optimization (not 
global), and sensitivity to the initial quantity and location of the codebook vectors. Despite these shortcomings, the 
simplicity of implementation and its computational tractability makes iterative optimization a viable approach for many 
applications, including the current one. We consider two familiar techniques: K-means and Kohonen learning. 
 
2.1.1 Batch Codebook Updating. The most recognizable clustering method by name is perhaps the K-means 
algorithm (MacQueen, 1967). It is also identified as the generalized Lloyd algorithm (GLA) based on an earlier work by 
Lloyd, which was formally published in (Lloyd, 1982). For completeness, we list the steps of the K-means algorithm: 
 

1. Initialize K codebook vectors in the input space. 
2. Partition the samples according which codeword each sample is closest to; ties resolved arbitrarily. 
3. For each partition, compute the mean of its associated samples from the previous step. 
4. Iterate from step 2 until a stopping criterion is satisfied. 

 
Though many different measures are cited in the literature, the L2 (Euclidean) norm is a standard choice for the 
similarity measure of step 2. The L1 norm is sometimes used to improve computational performance. K-means is 
considered a batch method because the entire codebook is updated at each iteration, which differs from the sequential 
method of Kohonen discussed next. 
 
2.1.2 The Self-Organizing Map (SOM) is the artificial neural network based on competitive learning developed by 
(Kohonen, 1982). It is distinct from K-means in three respects: 1) codewords are updated sequentially (as opposed to 
batch), 2) codewords are spatially ordered in the input space according to a predefined topology in a independent 
network space, and 3) use of a smoothing kernel and learning rate schedule during codeword updating. A primary goal 
of the SOM is to define a mapping from an input space ℜI

m
 onto a network space ℜN

d
 , where m ≥ d, and typically d ≤ 2. 

Fig. 1 illustrates the topological ordering of a simple one-dimensional SOM network with four neurons, and a two-

247International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B3. Amsterdam 2000.

Peter Doucette



dimensional input. Each connection or synapse between a component of a sample vector X and any single neuron has 
an associated ‘weight’. Collectively, the weights represent the codebook. “Winning” codeword(s) are determined for 

each input sample based on similarity metric, and subsequently updated according to 
Kohonen’s learning rule, 
 
 

                       ( ))()()()()()1( nnthtnn iqii WXWW −⋅⋅+=+ η .        (1) 

 
 
The n-th sample drawn is represented by X(n); Wi(n) is a codeword at the n-th iteration, 
and Wi(n+1) is the updated codeword. A time variable t is measured in epochs, each of 
which represents a complete presentation of all input samples to the network. Therefore, 

each epoch is the SOM analog to a single iteration in the K-means. A learning rate function, η(t), is defined as 
0<η(t)<1, and hq(t) is a neighborhood function centered on winning codeword q, and defined as 0 < hq(t) ≤ 1. As t → ∞, 
hq(t) → 0 (for all but the winning codeword) and η(t) → 0. Depending upon η(t), the sequential updating of codewords 
in the SOM lead to a generally smoother asymptotic convergence relative to the batch updates of K-means. A batch 
version of the SOM is described in Kohonen (1993). 
 
2.2 Simulations 
 
Let p(X) describe the probability density function for a feature in an image space ℜ2 as shown by the gray point samples 

in fig. 2. Fig. 2a shows a randomly initialized 
codebook for K = 10, where the codewords are 
depicted as nodes linked   according to their 
sequence. Although many initialization strategies 
exist in the literature (Duda and Hart, 1973; Gersho 
and Gray, 1992), the current one is used for 
demonstrational purposes which will become 
apparent. Fig. 2b shows the result of K-means 
clustering, where each node represents a local 
centroid. Notice that only half of the available nodes 
have been used in describing p(X). This is not 
necessarily problematic since such “dead” nodes are 
relatively simple to identify. However, if the dead 
nodes {2, 4, 7, 8, 10} are eliminated, K-means still 
does not provide a way of meaningfully linking the 

active nodes {1, 3, 6, 9, 5} with respect to vectorizing (delineating) the feature’s medial axis. Ordering may be derived 
from subsequent procedures, but it is built in to the SOM algorithm. 
 
Given the same initial configuration of fig. 2a, let the node sequence be represented by a one-dimensional SOM 
network. Fig. 2c-d demonstrate the ordering and refinement phases respectively of the SOM algorithm. During the 
process the neighborhood function progressively shrinks until only the winning node is updated. At this point the SOM 
becomes a simple winner-take-all (WTA) network, which is the sequential analog to the K-means. At convergence, the 
codewords are sequentially linked to delineate the feature’s curvilinear axis as a kind of vectorized skeletonization of 
p(X). However, as scene complexity increases, the SOM approach generally requires a priori information to preserve 
topological consistency in the input space (Doucette et al., 1999). 
 

       
Figure 3. SOM learning (a) random initialization; (b) after a few iterations; (c) ordering complete; (d) refinement 

 

Figure 1. 1-D SOM 

Figure 2. K-means (a) initialization; (b) convergence 

(b) (a) 

(a) (d) (c) (b) 
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3 EXPERIMENTS WITH IMAGERY 
 
The test image shown in fig. 4 is a 1.0m HYDICE strip flown over the U.S. Army’s Yakima Training Center (YTC), 
located near Yakima, Washington. The HYDICE aerial sensor is a push broom system that generates images with a 
spectral resolution of 210 bands within the range of 0.4-2.5µm (10nm nominal bandwidth). An optimized band 
reduction technique described in Lundeen et al. (1996) was applied by the provider to condense the original image to 44 
bands. A relatively rural 300x300 pixel test area is used in this study are so indicated in fig. 4. An appropriate band is 
selected from each of the RGB regions to simulate a true color image. 
 

 
Figure 4. Selected bands from a 1.0m HYDICE strip with 300x300 pixel test area outlined. 

 
 
3.1 Spectral Classification 
 
Supervised spectral classification is a relatively time consuming image processing step. The trade-off for a time-
economical approach is generally somewhat higher noise levels in the classification results. The idea was to input the 
results from a relatively ‘low-cost’ spectral classification of the image into our road vectorization algorithm to 
determine how robustly it could perform. A maximum likelihood classification (MLC) was performed on the first three 
layers from a PCA transformation of the 44-layer image. The eigenvalues indicated an accounting of 99% of the image 
variance in the first three PCs. Fig. 5 shows the spectral classification results for the paved road class that is used as 
input for our vectorization algorithm. Presence of both clutter and omission noise is apparent. The former is due to 
spectrally inseparable samples of rooftops and driveways, and the latter is largely attributable to a decrease in feature 
homogeneity with higher spatial and spectral resolution. 
 

         
Figure 5. Paved road class pixels from unedited maximum likelihood classification 
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3.2 Edge Detection 
 
When the spatial resolution of an image is such that road features manifest as elongated regions instead of single edges, 
edge-based extraction methods often impose the additional constraint of anti-parallelism (Neuenschwander et al., 1995). 
Another approach is to extract single edges from reduced resolution layers, and fuse the multi-scale space results 
(Baumgartner et al., 1999). These methods can perform quite well, yet may carry some extra algorithmic overhead. In 
general, edge-based road extraction requires reasonably well-defined edges. The Canny operator edge detection results 
in fig. 6 demonstrate that edge definition can be locally problematic in high spatial and spectral resolution images. 
Moreover, the stream feature in the upper left can be easily misconstrued as a road in this case. We conjecture that edge 
detection methods in general benefit relatively little from the additional spectral information contained in multispectral 
versus single layer images. On the other hand, region-based methods may have potentially more to gain from additional 
spectral information, which is a premise of our approach. 
 

   (a)        (b) 
Figure 6. Canny edge detection from (a) PC1 of original image; (b) MLC road class binary image 

 
3.3 Deriving Topology from Spatial Clusters 
 
3.3.1 MST and K-means. Graph-theoretic methods have been suggested as an effective means of deriving structural 
information for curvilinear features (Zahn, 1971; Suk and Song, 1984; Dobie and Lewis, 1993) or elongated regions 
(Lipari et al., 1989) via selective linkaging of samples. Similarly, Kangas et al. (1995) describes a variation of the SOM 
in which the mimimum spanning tree (MST) algorithm is used as the neighborhood criterion between codewords in 
sample space to enhance the mapping of certain feature types. Inspired by this variation, we employ MST to link 
codewords (post-convergence) as opposed to individual samples to derive road topology. But unlike Kangas, K-means 
clustering is used instead of Kohonen learning. The incentives for doing so include a generally faster convergence, no 
learning rate or neighborhood parameter requirements, a lighter computational load, less susceptibility to local minima 
traps, and less dependence on the order of sample presentation. (The ‘arbitrary’ tie rule in step 2 makes K-means 
sensitive to sample presentation order.) 
 
Fig. 7 demonstrates the vectorization process with the road class binary image of test area 1 as input. In fig.7a the 
codebook is initialized as a grid in the input space. Such initialization achieves an efficient balance between final cluster 
size uniformity and algorithmic convergence time. An advantage with batch codeword updating is that the median or 
trimmed mean can be easily substituted for the mean computation in step 3 of K-means to enhance noise tolerance. 
Although this adds slightly to computational requirements, it is particularly effective for samples exhibiting strong 
central tendencies, as is the case here. This reveals yet another limitation of sequential updating, which intrinsically 
finds the local simple mean. Fig. 7b shows the codebook convergence using ‘K-trimmed means’ clustering. 
Convergence is fast, requiring �� ��� ����	��
��� ������ ��� ���
���� ��
�� 	�� ���
������� ������� �
������ 
�� 	� �������
Pentium. Thin dotted lines indicate the Voronoi tessellation polygons (the dual of Delaunay triangulation) for the nodes, 
which provide a helpful visualization of each codeword’s “influence region” in the input space. At this stage, dead and 
weak codewords are determined for removal from further consideration. To assess relative cluster strength, eq. (2) 
shows the normalized cluster scatter measure used, where Si is the scatter matrix for the ith codeword, Ci. 
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The MST linked codebook is displayed in fig. 7c. A link strength assessment between codewords is incorporated into 
the MST cost function as a cross sectional scatter measure similar to eq. (2). In this case, Wi represents a midpoint 
vector between two codewords. The idea is to use global cluster statistics to help determine codeword usage and link 
thresholds dynamically versus a priori hard setting. Dashed connections reveal weak links found during the first MST 
pass. Since a MST by definition cannot form closed loops, loop closing must occur as a subsequent step that is based on 
the cross sectional measure between identified end nodes. The overall objective is to isolate a ‘trunk’ of the MST that 
corresponds to the road network via pruning the ‘noise’ branches. The use of the trimmed mean in K-means allows for 
fairly robust road centerline estimates without the support from anti-parallel edges. The extraction of the 3-way 
intersection reveals a shortcoming with local optimization in clustering, which must be corrected in a subsequent 
procedure. Finally, fig. 7d shows the results from a codeword resolution adjustment and topology-checking procedure. 
Similar results have been achieved with comparable test areas from the HYDICE strip. 
 

       
         (a)             (b) 

       
          (c)             (d) 
 

Figure 7. (a) 7x7 grid initialization; (b) clustering convergence; (c) first MST pass; (d) node resolution adjustment 
and topology checking 
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3.3.2 Dynamic Adjustment of K. The significance of K is that it represents the resolution of centerline vectorization, 
i.e., the local “shape-point” density. A well-known limitation of all clustering algorithms is the need to prespecify K, 
whose optimum value is unknown at the outset. The goal is to arrive at an optimal value, Kopt, dynamically. One option 
is to start with an initial Ki such that Ki < Kopt, and allow it to grow by selectively inserting new codewords locally. 
Since algorithmic execution time is appreciably sensitive to K, a potential advantage of this approach is improved 
computational performance (Fritzke, 1993; Rodrigues and Almeida, 1991). The alternative is to overestimate as           
Ki > Kopt, and merge codewords accordingly. Our strategy includes aspects of both since Ki varies locally with respect to 
Kopt. Since K-means uses only the closest local codewords, many dead nodes will result from an initial codeword grid 
configuration for Ki > Kopt. This mitigates the computational efficiency issue somewhat as uniform noise levels 
decrease. The objective is to select Ki more or less arbitrarily within an appropriate range, and densify codewords in 
regions of high road curvature as needed. Sections of low curvature are accordingly pruned. An angle threshold is 
applied to node-linked triplets post-MST to identify candidate insertion and deletion locations. Insertion codewords are 
initialized at the midpoints between existing codewords. The new triplet is allowed to readjust via local K-means while 
the remaining codebook is locked into position. This method represents a ‘true’ curve fitting as opposed to an 
interpolative estimation. Fig. 7d illustrates the final codebook adjustment. Following this, the codewords are 
sequentially ordered at the component level. Component end points are identified by codewords that possess more or 
less than two links, and direct GIS database entry of road centerline topology is possible. 
 
 
4 CONCLUSIONS 
 
A clustering-based approach to semi-automated road centerline vectorization from high spatial and spectral resolution 
imagery is investigated. Inspired by a variation of Kohonen’s self-organizing map algorithm, it substitutes K-means 
clustering for Kohonen learning. K-means describes more feature detail with less computational load, while the basic 
SOM is intended for a comparatively generalized resolution of abstraction that is less sensitive to noise. Requirements 
of high positional accuracy for extracted centerline information ultimately dictated the approach taken. With          
IFOV < 2m, most road features are open to region-based analysis. Since clustering analysis exemplifies a center-of-
gravity approach, it is not sensitive to edge definition. This allows for more meaningful exploitation of multispectral 
imagery versus edge-based methods.  
 
The MST algorithm is used as the primary mechanism for linking convergent cluster centers (codewords). The MST 
cost function incorporates global cluster statistics to contextually differentiate image noise from the signal. The idea is 
to exploit global information to render decision-making more dynamic, which local road-following methods may lack. 
Preliminary experiments with imagery demonstrate a potential for robust road vectorization results suitable for direct 
GIS database population. 
 
The goal of future research is to develop a fuzzy system that integrates more rigorous topology-checking methods from 
contextual road models in the literature. A further goal is to investigate this approach as a method for infusing 
topological information into the spectral classification step via a feedback loop. This concept holds the potential for 
fully automated processing that integrates curvilinear vectorization with feature recognition. 
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