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ABSTRACT

We are developing a system for reconstructing polyhedral surfaces from multiple images. This process can take advantage
of the topological relations of the observed image features triggering and therefore speeding up the grouping of features
to polyhedral surfaces. Exploiting the statistical properties of features when grouping them leads to consistent decisions
being invariant to numbering and choice of coordinate system and allows statistical testing. This simplifies the choice of
thresholds to the definition of a scene independent significance level. We decribe the topological and statistical models
used within our system. Experiments with synthetic and real data prove the feasibility of the approach.y

1 INTRODUCTION

Reconstructing polyhedral surfaces from multiple images is a classical task in Computer Vision. In case of controlled
environment solutions are quite far advanced. However, in outdoor environments, e. g. when tracking vehicles or when
reconstructing buildings, systems have to cope with quite a number of difficulties, such as a non-optimal feature extraction
producing cluttered image descriptions with qualitative and quantitative errors. The technique of grouping significant
features to high-level structures is often used to overcome some of these problems. The rules for grouping features are
either very general and do not apply to real imagery or are rather specific and depend on the specific task. Most of the
work was done in grouping two dimensional features but there also exists some work in 3D, for an overview see (Sarkar
and Boyer, 1993).

Apart from early work (cf. (Clowes, 1971), (Brooks, 1987), (Herman and Kanade, 1986)), grouping straight lines or
planes in 3D mostly appears in the context of building extraction from aerial images (cf. (Roux and McKeown, 1994),
(Henricsson, 1996), (Frere et al., 1997) (Baillard et al., 1999)). These approaches, though embedded in a specific ap-
plication appear to be the most general ones by restricting to polyhedral surfaces. The work of (Roux and McKeown,
1994) contains the most explicit use of 2D and 3D connectivity between features. (Baillard et al., 1999) generate plane
hypothesis by half-plane detection and group 3D lines within these half-planes using collinearity and coplanarity criteria.
Furtheron they close the half-planes by plane intersections.

All these systems primarily aim at finding at least one path from the basic features to object descriptions of generic nature
and in this respect give valuable rules for grouping. However, due to the complexity of the objects and the need to use
domain specific knowledge, no general grouping rules have been established.

We are developing a system for reconstructing polyhedral surfaces in outdoor environments aiming at exploiting as much
generic knowledge as available from the structure of polyhedra, the imaging and the feature extraction process. There are
two types of knowledge: a) neighborhood relations between the atomic features, points, edges and faces, resulting from
topology, and b) crisp form relations at the object, especially planarity, and during the imaging process, resulting from
geometry. On one hand, our feature extraction procedure (Förstner, 1994) was motivated by the need to exploit all features
and their mutual neighborhood relations. In (Rothwell et al., 1996) topology as basic information in object representation

yThis work has been founded by the European Community as part of the ESPRIT project “Image Processing for Automatic Cartographic Tools
(IMPACT)”, No. 20.243.

�This work originates from the time the author belonged to the Institute for Photogrammetry at the University of Bonn
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was emphasized in the context of object recognition. On the other hand, crisp and qualitative geometry in reconstructing
polyhedral scenes was the starting point for scene reconstruction (Clowes, 1971).

There are two basic problems to be tackled:
1. There appears to be no commonly accepted concept for topological relations in computer vision which can be used for
reasoning. The setup in (Rothwell et al., 1996), though broard in scope, does not support the topological reasoning based
on open sets.
2. The uncertainty of geometric entitites is a handicap for nearly all grouping systems, but needs to be conceptually
embedded into the grouping processes. The difficulty is the aquisition and use of appropriate uncertainty measures as e. g.
propagated by (Kanatani, 1995).

This paper adresses both problems: Its goal is to describe the topological and geometric concepts used in our system.
As topological reasoning is computationally far superior to geometric reasoning, we try to always exploit topological
knowledge before applying geometric checks. In order to minimize the number of control parameters for grouping the
uncertainty of the geometric features is tracked through the system in a consistent manner using classical error propagation
from 2D features to 3D structures. The feasability of this setup is demonstrated on real data, showing the usefulness of
using topology and the advantage of exploiting the statistics of the geometric entities.

2 TOPOLOGY OF POLYHEDRA, THEIR IMAGES AND IMAGE FEATURES

2.1 Polyhedral Surfaces and their Images

Due to occlusions and the incompleteness of any feature extraction polyhedral objects can only be recovered partially from
images. Without specific domain knowledge, e.g. restricting only the form of polyhedra, image analysis can reconstruct
sets of polyhedral surfaces. Polyhedral surfaces are connected subregions of the surface of a polyhedron.

The structure of such surfaces is given by a set of well known

0..n

0..n0..n

0..n

0..n 0..n

0..n 0..n

0..n

E´ R´

P´P

E R

1..n2

1..n 1..2

1..21..n

Figure 1: a) shows the neighborhood relations between-
points (P ), edges (E) and regions (R) of a polyhedral
surface. The multiplicity of the relations is constrained,
given as range (e. g. 1::n). The same generic constraints
hold for the features ~P 0, ~E0 and ~R0 of the ideal image. b)
shows the possible relations between the observed image
features P 0, E0 andR0 (0::nmeans optional).

constraints, inherited from polyhedra, especially concerning
the neighbourhood relations between points P , edges E and
regions R. These atomic elements are treated as open con-
nected sets of dimension 0, 1 and 2 being the basis for topo-
logical neighborhoodrelations (Dold, 1972). The formal model
is shown in fig. 1a.

If we first assume the faces of the polyhedron to have constant
albedo and the illumination to be homogeneous, an ideal pro-
jection with infinite resolution leads to a Mondrian-type im-
age, with points ~P 0, edges ~E0 and region ~R0 showing relations
with the same generic restrictions concerning the neighbor-
hood relations. Occlusions yield missing features and missing
and incorrect relations.

2.2 Observable Image Features

We assume this ideal image is tried to be recovered with some feature extraction method. We use the method described
in (Förstner, 1994, Fuchs, 1998) in general yielding points P 0, edges E0, and regions R0 which are assumed to have no
overlap in the image plane. We also obtain neighborhood relationsN (F 0

j; F
0

k), directly by analysing the Voronoi diagram
of all features F 0 (cf. fig. 6). There is no guarantee that all features or relations of the ideal projection can be detected.
Much more, neighborhood relations may occur between features of the same type. This situation is depicted in fig. 1b,
where no constraints on the number of neighborhoods can be found.

2.3 Relations between 3D Aggregates and their Generating Image Features

Starting from atomic features we may derive feature aggregates A
in order to reach a higher level of aggregration. The rules for this
aggregation process generally result from the image analysis task.
The aggregation process can take advantage of the neighborhood
relations. As we want to reconstruct polyhedral surfaces we are in-
terested in basic 3D aggregates, namely point induced corners C,
edge induced wings W and region induced meshes M as shown in
fig. 2. These aggregates (A) may refer to the polyhedral surface rep-
resenting local surface structures, to its ideal image ( ~A0) triggering
the grouping process or to the observed image (A0) yielding a higher
level of symbolic image description.
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Figure 2: shows basic aggregates, corners, wings
and meshes. Corners are most likely to show the
same topology in the image (cf. (Clowes, 1971)).
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Thus we obtain the following generic situation shown in fig. 3. Let the image features iF 0 and their neighborhood relations
iN 0

:
= N (

iF 0

j;
iF 0

k) of image i be collected in the feature adjacency graph iFAG0
= G(iF 0; iN 0

), being a compact
representation of the situation in fig. 1b. Our goal is to reconstruct parts of the 3D FAG and to derive 3D aggregates
together with their neighborhood relations, contained in the aggregate adjacency graphAAG. We want to discuss corners
in detail, as they form the basis for our 3D recontruction procedure.

The 3D corners that are estimated in our approach are a special class of aggregates A. They are composed of 3D features
F together with the used neighborhood relations. Fig. 3 represents the relation between the FAG’s in object resp. image
space and the AAG.

The reconstruction starts at 3D-corners. Corners with n � 1

i FAG’
(2D)

FAG AAG
(3D) (3D)

Figure 3: Relationship of the graphs iFAG0 of the im-
ages i, the 3D FAG and the graphs of the 3D aggre-
gates, AAG. Some of these 2D features induce a set of
3D features and their neighborhood relationship, con-
tained in the 3D FAG. Aggregating these features
leads to entities like n-corners Cn, which in turn is
part of the 3D AAG.

neighboring edges may be represented by Cn
= (P;E1; : : :-

; En; R1; : : : ; Rm). The geometry of these 3D-features is given
by the three coordinates of the corner point and the n directions
of the edges.

Due to the multiple image redundancy the 3D edges E1; : : : ; E2

can be taken to be quite reliable. The generation of the 3D
corners also establishes reliable neighborhood relations (inci-
dences) between the 3D point and the 3D edges but also between
the recovered 3D features F and the corresponding 2D features
F 0.

We also obtain neighboringplanar regionsR1; : : :Rm with
�
n

2

�
�

m � 1; but, without exploiting the 3D geometry in detail, e. g.
by an occlusion analysis, they cannot be inferred reliably.

The reconstruction process, descibed below (cf. 4.1), actually uses a set of image points and edges which, in a many-to-one
relation, are linked to the 3D point and edges.

3 UNCERTAIN GEOMETRIC ENTITIES

Grouping 3D entities involves tests of various relationships between these entities. Geometric relationships play a central
role, especially if they involve identities, incidences or other crisp conditions, as they can be used to either exclude merg-
ing processes with high reliability or to evaluate grouping results. Checking for the existence of these crisp relationships
requires thresholds which depend on the uncertainty of the geometric parameters and therefore best are formulated as
hypothesis tests. Thus we derived the uncertainty of the initially reconstructed 3D aggregates, especially corners, repre-
senting it in a covariance matrix and built a library for “statistical uncertain geometric reasoning”, containing routines for
generating 3D geometric entities and for checking geometric relations between them1. The concepts are similar to those
of (Kanatani, 1995). Here we describe the process for generating uncertain 3D entities from image features and the basic
elements of the geometric reasoning modules.

3D features are represented in two ways, an Euclidean one

entity type representation
P (X) normal X

hom. X = (X0; X) �= (X; 1)

L(L) normal (X ;M)

hom. L = (L;L0) �= (M ;X �M )

"(A) normal (N ; D)

hom. A = (A; A0)
�= (N ; D)

Table 1: shows the basic spatial entities with their differ-
ent representation. The line parameters fullfill the con-
ditionL�L0 = 0. The vectorsM andN represent nor-
malized directions and normals resp.

resulting from the reconstruction process and a homogeneous
one for the spatial reasoning, which is used internally. The ho-
mogeneous representation, in contrast to using different maps,
is continuous and allows also to represent entities at infinity. In
all cases the uncertainty is represented by a covariance matrix
of adequate rank, cf. (Förstner, 2000b).

We have to solve three tasks:
1. Transferring given entities into the internal representation.
2. Generating new entities from given ones.
3. Testing pairs of entities for specific geometric relations.

Table 1 summarizes the used representations.

We realized modules for generating 3D entities from other given ones, namely, L = P 1 ^ P2, L = "1 \ "2, " = P ^ L

and P = L \ ", where the operator ^ joins two entities, and the operator \ intersects two entities. A plane " from three
points P i; i = 1; ::; 3 is determined via " = (P 1 ^ P 2) ^ P3.

1This library sugr, written in C++ and in MAPLE is available upon request.
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Table 2 collects the spatial relations which are useful for 3D-grouping. The explanation of the matrices A and B are given
below. We now give an example for each of the three tasks.

Normalizing 3D points: 3D points are represented in homogeneous coordinates X with their length fixed, i. e. non-
stochastic. Their 4 � 4 covariance matrix �XX therefore has rank 3 and nullspace h = X. It is determined from the
given 3� 3 covariance matrix �0

XX ofX:

�XX = Ph

�
�

0

XX 0

0
T 0

�
Ph

using the projection matrix Ph = I � h(hTh)�1hT.

A line from 2 points: The line L(L) through two points

entities relation dof test
P ’,P” P ’ � P ” 3 YiX�XiY = 0

P , L P 2 L 2 B(L)X = 0

P , " P 2 " 1 X�A = 0

L’,L” L’ � L” 4 L00i L
0 � L0i L

00 = 0

L’ k L” 2 L
0
� L

00 = 0

L’ \ L” 6= ; 1 L
0�L

00

= 0
L’ ? L” 1 L

0
�L

00 = 0

L, " L 2 " 2 B(L)A = 0
L k " 2 L �A = 0
L ? " 1 L�A = 0

"’, "” "’ � "” 3 BiA�AiB = 0

"’ k "” 2 A
0
�A

00 = 0

"’ ? "” 1 A
0
�A

00 = 0

Table 2: shows 13 relationships between points, lines
and planes useful for 3D grouping, together with the de-
gree of freedom and the essential part of the test statistic.
The index i in the condition L’ � L”is to be chosen such
jLi; L

00

i j >> 0; analogouslychoose i forP ’� P”and "’�
"”. Observe, all tests are bilinear in the coordinates of the
involved entities, thus allow rigorous error propagation.

P (X) and Q(Y) is given by a 6-vector, its Plücker coordi-
nates:

L =

�
L

L0

�
=

�
XY 0 � YX0

X0 � Y 0

�

= A(X)Y = �A(Y)X

with the 6�4 matrices

A(X) =

�
XI �X0

SX0
0

�
and A(Y) =

�
Y I �Y 0

SY0 0

�

with the matrix SY = [Y ]� inducing the cross productY �

Z = SyZ = [Y ]�Z. Thus its covariance matrix �LL of
L(X;Y) for correlated pointsP (X) and Q(Y) is given by:

�LL = (�A(Y) A(X))

�
�XX �XY

�YX �YY

��
�AT(Y)

AT(X)

�

The covariance matrix has rank 4 with nullspace H = (L;L),
where LT = (L0

T;�LT), the first column, due to the nor-
malization to its length (cf. above), the second due to the
orthogonality constraint between L and L0.

Testing the incidence of a point and a line: We want to test the relation P (X) 2 L(L). Let us assume the line L(L)
is generated by two points P1(X1) and P2(X2). For an arbitrary point Q(Y) the 4 points only are coplanar if the
determinant D = jXX1X2Yj vanishes. Using the Plücker-coordinates of LT = (LT;LT

0
) consisting of the six 2 � 2

determinants of (X1X2) we can write the determinant as the bilinear form, cf. (Weber, 1998), (Förstner, 2000a):

D = �X
T B(L)Y

:
= X T

�
�SL L0

L0
T 0

�
Y = YTB(L)X = YTAT(X)L

This determinant vanishes for arbitrary pointsQ if P 2 L, thus if the 4-vector2

D
:
= �B(L)X = AT(X)L = 0

is 0. The skew matrix B(L) has rank 2 and eigenvectors (LT; 0) and ((L � L0)
T; jLj2). The hypothesisD = 0 uses

T =DT
�
+

DD
D � �2

2

as test statistic which requires the pseudoinverse of the covariance matrix of D. With the Jacobian J = @D=@(L;X) =
(AT(X);�B(L)) we obtain the covariancematrix ofD:

�DD = AT(X)�
LL

A(X) + B(L)�XXB(L)T

The covariance matrix �DD has rank 2 and nullspace H = (X; (LT 0)T). This allows to determine the pseudo inverse
from �

�
+

DD �

� �

�
=

�
�DD H
HT

0

�
�1

2
D = B(L)X describes the plane passing through line L and pointX, which is undetermined if P 2 L or if D = 0.
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4 RECONSTRUCTING POLYHEDRAL SURFACES

4.1 Generating 3D Corners

The corner reconstruction, cf. (Lang and Förstner, 1996), starts with selected image aggregates having the stuctural prop-
erties of 3D corners and thus probably being corners iC0 in the i-th image. These image corners iC0 are selected by point
induced feature aggregation using the extracted features iF 0and their mutual neighborhood relations iN 0

:
= N (

iF 0

j;
i F 0

k)

collected in the graph FAG0, cf. (Fuchs, 1998). Multi image correspondence analysis establishes an image corner corre-
spondence evaluating the structural similarity of the image corners with respect to epipolar geometry. This correspondence
set forms the basis for the transition to initially derived 3D corners C being corner hypotheses. These hypotheses have to
be verified by multi image parameter estimation using all image features F 0 which support the hypotheses simultaneously.
For verification the residuals of parameter estimation are used. Each n-corner Cn requires 3+ 2 �n geometric parameters
g being the three coordinates of the point vector x of the corner point P0 and two parameters for each of the n edges Ek

of the n-corner, being the direction angles �k and the azimth �k.

Besides the optimal estimates bg of parameters the parameter estimation also gives their covariance matrix �
bgbg , which

is used to propagate the uncertainty of the corner reconstruction during 3D grouping. In order to have a link to the
above mentioned geometric reasoning (sec. 3), we actually store the n + 1 3D-points being the corner point P0 and
virtual points Pn(X + Rk) along the corner edge direction which are given by the normalized direction vectors Rk =

(cos�k cos �k; sin�k cos �k; sin�k),determined from the angle parameters �k and �k of the corner edge Ek. Starting
with the covariance matrix�

bgbg, one can easily derive the covariance matrix�xx of the n+1 points by error propagation.
Thus triplets of points are used for deriving corner planes "m(Am) (sec. 4.3) spanning the regions Rm including the
corresponding covariance matrix�AmAm .

4.2 3D-Grouping

Now we want describe our approach to derive a description of polyhedral surfaces from the computed corners Cn derived
in 4.1. The goal of the first two steps of the proposed grouping approach is to find those 3D entities, namely 2-corners and
1-corners (furtheron called directions), which belong to the same polyhedral surface. Starting from the set of n-corners
Cn

= (P;E1; : : : ; En; R1; : : :Rm) with m =
�
n

2

�
, we generate a set of m 2-corners C2

= (P;E1; E2; R(")) for each
n-corner Cn. Note that every 2-corner is neighbored to at least one region R which lie on a unique plane ".

4.3 Grouping 2-corners of Surfaces

For grouping coplanar 2-corners we have to test
�
k

2

�
pairs of corners (C2

j0; C
2

j00), where k is the total number of 2-corners.
If we would only apply a geometrical test on coplanarity, we might group corners, which actually refer to different
polyhedral surfaces but are accidentally planar (see example 5). Furthermore, solely testing coplanarity can be quite time
consuming, depending on k and the time-behaviour of the geometrical test. Therefore we first exploit the topology of the
underlying images i, namely the relations of the FAG0, cf. 2.3, before applying a geometrical test. Using topology is most
likely not as time-consuming as using geometry, since it is only a look-up on the known data.

Selecting Hypotheses using Topology: Here we apply the analysis of relations of 2D and 3D features and aggregates
as described in 2.3. A pair of corners (C2

1
; C2

2
) belongs to the same mesh (i.e. a 3D polyhedral surface including its

boundary, cf. 2.1) if they are both neighbored to the same 3D-region, i. e. they are related in theAAG. This relation in 3D
also can possibly be found in the relations of the FAG0 of the images. We can use this fact to select those pairs of corners
satisfying the following condition: suppose E 0

1
resp. E 0

2
to be the set of image edges inducing the corners C2

1
resp. C2

2
.

These image edges again are neighbored to a set of image regions R0

1
resp. R0

2
of all images. If the intersectionR0

1
\R

0

2

is not empty, we can infer the hypothesis that the 3D-edges of the corners C2

1
, C2

2
share at least one 3D-region.

Testing Hypothesis using Geometry: We now take the selected pairs of corners from 4.3 and group them with respect
to coplanarity. Since the two corners are statistically uncertain, we apply the method described in sec. 3: we compute the
plane "1 resp. "2 of the 2-corners C2

1
resp. C2

2
and their covariance matrices �A1A1

resp. �A2A2
and test the condition

"1 � "2. If this is true, we assume that the two 2-corners belong to the same polyhedral surface. Testing this for all
selected cornerpairs, we obtain a number of grouped sets G = fGgg = f

S
C2

gjg of 2-corners, which are identified to
belong to the same surface.

4.4 Grouping Directions of Surfaces

A direction is a 1-corner D := C1
= (P;E), generated from an n-corner, similar to 4.3. In this step we want to include

those directions, which belong to the surface, but have not been covered by the above grouping process. This is possible
as one can see in fig. 4. To find those directionsD, we again first apply a selection based on topology before geometrically
testing planarity.
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Selecting Hypotheses using Topology: We consider all pos-
sible pairs (G;D) of grouped sets G from 4.3 and directions
D. With the same argument as in 4.3, we can compare the
neighbored 2D-regions R0

1 of G with the neighbored 2D-
regions R0

2 of the direction D. If the intersection of these
2D-region sets is not empty, we accept this pair for the sub-
sequent geometrical test.
Testing Hypothesis using Geometry: From the grouped set
of corners G we can compute an averaged plane "(A)G with
an averaged covariance matrix �AA. From the direction D
we can compute a line L with �LL. If the geometrical test
does not reject L 2 "G, we include D to the grouped set of
corners G.

2

2C

1

2C

3

2C

1

2C

2

2C
D

3

2C

Figure 4: The 2-corners C2
1 and C2

2 are coplanar, but
not with C2

3 . One direction D 2 C2
3 is coplanar to

C2
1 and C2

2 . Black arrows indicate directions within a
group.

4.5 Grouping Directions to 3D Edges

At this stage of grouping we know, which corners and directions belong to the same surface. Now the task is to connect
the corners C2 and directionsD := C1 so that the connections are (estimated) 3D edges of the polyhedral surface.

Selecting Hypotheses using Topology: Each direction D 2 C2 of a corner C2 resp. a direction D from 4.3 refers to a
set E 0(D) of 2D image edges. Again, using the analysis of relations of 2D and 3D features and aggregates in 2.3, a pair
of directions (D1; D2) belongs to the same 3D edge if they share at least one 2D edge, i.e. E 0(D1) \ E 0(D2) 6= ;. Note
that we do not test all directions in the scene, but only those belonging to the same grouped set G of corners.

Testing Hypotheses using Geometry: It is still possible that the topology selection above results in pairs (D1; D2) of
3D-direction, which are not collinear to each other, e.g. when having an accidental view. Therefore we test the two lines
L1; L2 with�LL induced by the directions: L1 � L2. If a pair of direction also succeeds this test, we assume to have a
polyhedral edge between them.

4.6 Generating 2-Corners from 3D Edges

The step described in 4.5 may already result in a complete boundary description of a polyhedral surface. This boundary
description can be interpreted as an undirected graph. Then the boundary is called complete if the graph consists of one
cycle. However, if there is no cycle in the graph, we might be able to add a vertex and replace two graph-edges in order
to get a cycle. An addition of a vertex is the same as estimating a new 2-corner on the surface; replacing two edges is the
same as grouping the two directions of the new 2-corner to two new 3D-edges of the surface. We can do this by computing
the intersection of direction pairs (D1; D2), where the directions Di refer to vertices of arity 1. We only consider those
intersections which lie on the directions; its projection in the images must be within the image bounds. If there is more
than one possible intersection for one direction, we take the one closest to vertex of arity 1.

4.7 Generating 3D Edges from 2D Edges

Now we still might have an incomplete boundary of the surface, e.g. a U-shaped boundary, where two directions are
parallel to each other. We do not have 3D information to fill the gap at this stage of the analysis, we’d have to go back to
the images and project appropriate 2D edges (selected by an anlaysis of the iFAG0) to the planar surface. The we have to
find the intersections of the projedted 2D edge with the parallel direction. This has currently not been implemented yet.
As a first guess we just close a U-shape boundary by connecting the vertices of arity 1.

5 RESULTS

We have tested our grouping approach described in sec. 4 on one synthetic scene with two polyhedra (cf. fig 5) and
with 11 aerial scenes containing one building each (cf. figs. 6 and 7) without changing any parameters. Alltogether 110
n-corners have been generated, containing 232 directions.

We excluded those directions where the averaged standard deviation ��;� :=

q
�2
�
+�2

�

2
of the direction angles � and �

exceeded 10�, thus rejecting bad observations. The algorithm found 62 polyhedral surfaces. Table 3 documents the effect
of topological selection prior the geometrical test, the reduction rate in the three grouping stages in sec. 4.3–4.5 is less than
40%. It can also be seen that the topological test on shared 2D lines sec. 4.5 is more reliable than the ones of intersecting
2D regions in 4.3 resp. 4.4, cf. third column.
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6 CONCLUSIONS

This paper presents a procedure for 3D grouping by combination of topological and geometrical reasoning. It shows the
advantage of using topological reasoning to efficiently reduce the number of geometric checks to be performed while
feature grouping. The topological reasoning is based on a close interaction of 2D and 3D information to exploit the
redundancy of the observed FAG’s in image space. While subsequently checking geometrical relations we use rigorous
statistical testing which allowed to use the same control parameters for all examples and thus supports the generality of
the approach. the experiments with real data demonstrated the feasibility of the approach. Future work is directed toward
integrating single points, but more important, lines or wings ((Baillard et al., 1999)) and possibly regions or meshes in
order to improve completeness of the reconstructions. We also will investigate the impact of integrating range data, either
from stereo or from laser scanners, (Brunn, 2000). 3
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Grouping
Stage

All
Tests

Topology
Selection

Geometrical
Approval

sec. 4.3 1007 361 (36%) 98 (27%)
sec. 4.4 1363 362 (27%) 219 (60%)
sec. 4.5 328 73 (22%) 53 (72%)

Table 3: The table lists statistics for the three grouping stages
desribed in sec. 4.3–4.5. The first column lists the number of
all possible tests at this stage. The second column gives the
number of selected tests just by using topology, additionally
the reduction factor is given in percentage. The third column
contains the number of succesful geometrical tests; here, the
number in brackets gives the percentage of accepted geomet-
rical tests from the accepted topology tests—if it would equal
100%, the geometric test would be useless.

Figure 5: Synthetic example. The left picture shows the
set of generated n-corners and the right the set of recon-
structed surfaces from these corners. Note that the top sur-
faces of the two polyhedra are detected as distinct though
coplanar.

Figure 6: Building example 1. The first row shows two out of four images for one tested aerial scene , the
feature extraction for one image and the Voronoi diagram of the features yielding to neighborhood relations of
features (cf. sec.2.1). The second row shows the set of generated n-corners (left) and the set of reconstructed
surfaces (right).

Figure 7: Building example 2. Another reconstruction of an aerial scene with a set of n-corners
(left) and the found surfaces (right). Note that the long direction in the back of the scene was
removed because of the bad standard deviation of the angles.
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