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ABSTRACT

Two tasks, image transfer and object reconstruction, are investigated using three different approaches.  The first
approach, based on the fundamental (F) matrix, compares the use of all three F matrices with epipolar constraints to the
use of only two F matrices.  The second approach uses the four trilinearity equations and employs strategies to deal with
the dependency among the equations and the parameters.  The third approach is a new one based on collinearity that
uses independent equations and therefore yields a rigorous solution.

1 INTRODUCTION

The goal of this research is to investigate and improve invariance techniques to assist in performing photogrammetric
tasks.  The topics of image transfer and object reconstruction constitute the main sections of this paper.  The invariance
relationship among image coordinate observations that must be solved to perform image transfer is also a necessary step
before doing object reconstruction.  Three main approaches –  based on the fundamental matrix, the trilinearity
equations, and a new collinearity approach –  are presented with relevant equations; and results are tabulated for
experiments with both simulated and real image data.

2 IMAGE TRANSFER

Image transfer is an application performed on a triplet of images.  Given two pairs of measured image coordinates, the
third pair can be calculated using a previously established relationship between pairs of image coordinates on all three
images.  Three basic approaches for establishing the image-to-image relationship are discussed in this paper:  the
fundamental matrix approach, the trilinearity approach, and the collinearity approach.

2.1 Fundamental Matrix (F) Model

The fundamental matrix relates the image coordinates of 3D objects that appear on two images, i and j, as follows:

[ ] [ ] 011 =T

jiji yxFyx (1)

where ),( yx  are measured image coordinates.
The 3 by 3 F matrix has eight unknown parameters since it is determinable up to a scale factor.  In fact there are seven
independent parameters, since F is of rank two and its determinant must be constrained to equal zero.

Previous techniques based on the F matrix have enforced the relationship between only two of the three existing image
pairs.  In other words, if image coordinates are to be computed on image 3, then we would solve for the elements of
only F13 and F23.  With eight common points between images 1 and 3, we can linearly solve for the eight elements of
F13 using  equation (1).  Eight common points between images 2 and 3, which can contain any or all of those used
between 1 and 3, can be used in the same way to solve for the elements of F23.  The solution can be refined by imposing
the determinant equals zero constraint on each of the two F matrices, thus reducing the number of independent
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Figure 1.  Epipolar Constraint

unknowns from 16 to 14.  For any new 3D object point whose image coordinates are observed in images 1 and 2, the
image coordinates of the new point in image 3 are computed by solving two linear equations of the type (1).

In a new F matrix technique, all three possible F matrices are used in a simultaneous, constrained least squares
adjustment; see Figure 1.  In order to obtain initial estimates for the 24 elements (8 per F matrix), an unconstrained
linear solution using at least eight conjugate points per image pair should be performed first.  Since the coefficients of
the 3 F matrices, i.e. the 24 parameters, are not independent, it is necessary to enforce the epipolar constraint in order to
improve the numerical stability and robustness.  According to the epipolar constraint, the three pairs of epipoles (e12,
e13, e21, e23, e31, and e32) must lie on the same plane that contains the 3 camera stations (C1, C2, and C3) [Faugeras and
Papadopoulo, 1997].  See Figure 2.

One form of writing the epipolar constraint equations is in (2a), where e23 is the vector of homogeneous coordinates of
the epipole on image 2 for C3, and e32 is the epipole vector on image 3 for C2.  Both e23 and e32 are estimated from F23 in
Equation (2b):

032132312 =− eFeF   (2a)

0,0 23233223 == eFeF T  (2b)

The three epipolar constraint equations (2a),
represented in matrix form, are valid only to a
scale factor.  Thus we obtain two independent
equations from the three by dividing the ith

equation by the third equation, for i = 1 and 2 as
follows:
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where F(i) is the ith 1 by 3 row vector of 3 by 3
matrix F.  The two epipolar constraint equations, G4 = 0 and G5 = 0, are obtained for i = 1,2, by clearing fractions in
Equation (3).  Recall that the first three constraint equations are that the determinants of the F matrices equal zero, or

0,0,0 233132121 ====== FGFGFG .

The constraint equations, G4 and G5, are written in terms of the epipoles, e23 and e32, which are needed to facilitate the
writing of the epipolar constraints.   These 4 variables, ex23, ey23, ex32, ey32, are called “ added parameters”  since they are
not used as actual parameters in the writing of the condition equations.  Since there are four added parameters, we
require four additional constraint equations, derived by taking the first two rows of each Equation (2) as follows:

0

1

)2(,0

1

)1(,0

1

)2(,0

1

)1( 23

23

23923

23

23832

32

23732

32

236 =















==
















==
















==
















= y

x

T
y

x

T
y

x

y

x

e

e

FGe

e

FGe

e

FGe

e

FG (4)

In summary, for each 3D object point appearing on three images, we write three condition equations of the form of
equation (1).  A linear solution is implemented to solve for estimates of the F matrix elements that will be used as initial
approximations in the next step. Then, a non-linear solution with constraints and added parameters, and the same three
condition equations per point, is performed [Mikhail, 1976].
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2.2 Trilinearity Model

The geometric relationship between three perspective views is established through the trifocal tensor, which consists of
27 dependent intrinsic elements of a vector T.  Previous research has shown that the trifocal tensor provides greater
immunity to degenerate cases that plague the F matrix techniques for dealing with triplets.  Four homogeneous
equations that are linear with respect to the elements of T can be written as a function of the image coordinates on three
overlapping photographs and the 27 elements of T.  Thus the trifocal tensor can be computed linearly using a set of at
least seven points whose image coordinates are measured on all three photographs.  Lack of robustness using this linear
technique for three-photo image transfer and object reconstruction has prompted us to derive constraints among the 27
dependent elements of T to provide stability to the solution, which becomes non-linear due to the constraint equations.
An additional constrained solution is provided, which uses only three of the four dependent equations.

2.2.1   Linear Formulation.   This subsection provides a summary of the derivation of the four trilinearity equations.
The trilinearity equations are derived from the projective relationship that exists between an object point in 3D model
space and its associated image coordinates in the 2D image planes of each of the three photographs.  Consider the
perspective projection for a single photograph.  Using projective geometry, a 3 by 4 camera transformation matrix, P,
linearly relates 3D object coordinates to 2D image coordinates as follows:

[ ] [ ]TT ZYXPyx 11 ≈ (5)

where x,y are image point coordinates,
X,Y,Z are object point coordinates, and
the symbol " ≈ " implies equality up to a scale factor.

Since we are establishing a relationship between image coordinates, we are not concerned with absolute ground
positions of points for now.  Therefore, we can assume camera 1 is fixed, and consider the relative positions and
orientations of cameras 2 and 3 with respect to the fixed camera 1.  Then the relative P’s ),,( 321 rrr PPP  of the three

cameras can be expressed as follows:

[ ] }{ }{ ijrijrr bPaPIP ===
××××× 43

3
43
2

133343
1 ,,0M (6)

These are the matrices that relate the homogeneous model coordinates (X1, X2, X3, t) and the three pairs of image
coordinates, (x, y), (x’, y’), (x", y"), on the three images, respectively.  The reference [Hartley, 1996] explains why Pr1

may be assumed, as shown in equation (6), without loss of generality.  Note that there are 24 total unknown elements in
the three Pr’s.  Because there is more than one possible value for t, the 24 elements in Pr1, Pr2, are replaced by a set of 27
dependent T coefficients, leading to the following four trilinearity equations (see [Shashua,  1997]):

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 0
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TyTxTTyTxTxTyTxTxxTyTxTx

(7)

To establish the relationship between image coordinates on a triplet of photographs, we write four equations (7) per
point as a function of its six image coordinate observations (x,y,x’,y’,x",y") and 27 trilinearity coefficients (T’s), and
solve the linear system of homogeneous equations for the 27 parameters.  Note that the minimum number of points
would be seven, since we would write 28 equations to solve for 27 unknowns.

This linear solution has two problems:  1) although the four equations (7) are linearly independent, only three of the
four equations are algebraicly independent [Vieville, et. al., 1993]; and 2) the 27 parameters (T’s) are not independent.
Therefore, the solution to these linear equations is used to obtain initial estimates for the parameters to be used as input
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for one of the nonlinear solutions that contain constraints among the parameters.  These refined solutions are discussed
in the remaining subsections.

2.2.2   Constrained Solution with Four Dependent Equations (Model 1).   There are four constraints among the 27 T
coefficients in Equations (7) that are commonly used.   The first is that the 27th (i.e., the last) element of the vector T is
set equal to one.  The next three are that the determinants of three 3 by 3 matrices, constructed from the T’s, are equal to
zero; see [Hartley, 1997].

Although this solution with three constraints tends to alleviate some of the instability problems, the solution still is not
rigorous because it uses four algebraicly dependent equations.  Since it is not possible to linearize with respect to the
observations (the corresponding coefficient matrix becomes rank deficient), the objective function to be minimized is
the sum of the squared errors of each equation (7) instead of the sum of the squared residuals to the observations.

2.2.3   Constrained Solutions with Three Independent Equations (Models 2,3).   There are two models to be
discussed that use three independent equations per point.  Both of these two models use the first three of the four
trilinearity equations; i.e., Equations (7).  Since the three condition equations are algebraicly independent, we linearize
them with respect to the observations in order to obtain a rigorous solution.

Both models carry 24 parameters with six constraints since there should be only 18 independent parameters.  In Model
2, the parameters are 24 of the T coefficients (T1 through T24).  In Model 3, however, the values for the elements of Pr2

and Pr3  (aij and bij) are computed from the initial estimates of the 27 T coefficients, and are used as the actual
parameters in the adjustment.

The six constraint equations in terms of T coefficients are found in [Faugeras and Papadopoulo, 1997].  The six
constraint equations in terms of the elements of Pr2 and Pr3 are described in [Hartley, 1996]; however, since the
reference does not give them explicitly, they are listed below:
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2.3 Collinearity Model (Model 4)

All published derivations to trilinearity use the two scale factors,
allow more than one value for t, when in theory there should be
only one.  The following derivation, called "relative collinearity"
uses a single scale factor, t, and four algebraically independent
equations.  As in the trilinearity derivation, we compute the 3D
projective object coordinates from image 1, and then project the
object point into images 2 and 3; see Figure 2.  This leads to the
following four condition equations:
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(9)

These four condition equations are independent; however they contain the additional unknown parameter t, which is a
unique scale factor for each point observed.  The other parameters involved are the 24 total elements of Pr2 and Pr3 (aij

and bij), which are computed from the initial estimates of the 27 T coefficients.  Note that the T coefficients are
estimated from the linear solution of the trilinearity equations, (7).

Image 1 Image 2 Image 3

( x/t , y/t , 1/t )
Figure 2.  Relative Collinearity  Model
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Figure 3.  Fort Hood:  Footprints of 2
Vertical Aerial Frames Overlaid on 1
Oblique Frame

2.4 Experiments

Three data sets are used in the experiments:  simulated data with different levels of perturbations; real data over Fort
Hood, Texas including 2 near vertical and 1 low oblique aerial frame photographs; and real close range photographs of
the EE building on the campus of Purdue University taken with a 75 mm hand-held camera.  For each of the data sets,
the image transfer process is performed and tested on a triplet of images using each of the methods.  First, image
coordinate measurements of "control points" on all three photographs are used to solve for the parameters associated
with the current method.  Then, using those parameters and the measured image coordinates on the first two images of
"check points", the conjugate image coordinates on the third image are computed.  Finally, the computed and measured
image coordinates of the check points on the third image are differenced and collectively expressed as root mean square
(RMS).

2.4.1  Simulated Data.  Simulated ground points are situated in the range of 0 to 400 meters in X and Y, and between 0
and 125 meters in Z.  The ground points are intersected in the image planes of 3 simulated convergent frame
photographs with nominal camera station heights of 460 meters and focal lengths of 150 mm.  Two photographs are
tilted at nominal angles (ϕ) of 33 degrees, while one photograph is near-vertical.  The image coordinates on the three
photographs are perturbed with noise of magnitudes 10, 15, and 25 micrometers.  The results for all of the discussed
image transfer methods are shown in Table 1; note that points are transferred to the near vertical photograph.

10 µm perturbation 15 µm perturbation 25 µm perturbation
Model x RMS (mm) y RMS (mm) x RMS (mm) y RMS (mm) x RMS (mm) y RMS (mm)

Model 1 0.013 0.041 0.038 0.055 0.038 0.075
Model 2 0.014 0.049 0.046 0.042 0.044 0.074
Model 3 0.014 0.049 0.046 0.042 0.044 0.074
Model 4 0.014 0.049 0.046 0.042 0.044 0.074

3F’s 0.049 0.058 0.056 0.041 0.054 0.073
2F’s 0.083 0.139 0.054 0.041 0.206 0.194

Table 1.  Image Transfer Experiments with Simulated Data, 8 control points and 7 check points

2.4.2  Fort Hood Data.  The Fort Hood data set consists of two near vertical aerial frame photographs taken at 1650
meters above mean terrain, and one low-oblique aerial frame photographs taken at a flying height of 2340 meters with a
25 degree (from the vertical) side-looking angle; see Figure 4.  The pixel size for all three photographs is 30 by 30
micrometers.  Table 2 shows the results of image transfer to the oblique photograph.

Model x RMS
(pixels)

y RMS
(pixels)

Model 1* 0.64 0.59
Model 2** 0.47 0.61
Model 3** 0.47 0.61

Model 4 0.47 0.61
3F’s 0.54 0.62
2F’s 0.50 0.62

Table 2.  Image Transfer Experiments with Fort Hood Data,
19 control points, 18 check points

* After scaling image coordinates to range from
-1 to +1.
** After rotating image coordinates by 90 degrees.

As noted by the asterisks below Table 2, the raw image coordinate data must be augmented for Models 1-3 in order to
obtain those results.  Since Model 1 does not rigorously linearize with respect to the observations, the image coordinates
must be scaled in order to prevent the solution from becoming unstable.  A degenerate case occurs for Models 2 and 3
for this particular case of aerial photography where the air base direction between the two near vertical photographs is
parallel to the image x coordinate direction and the first three algebraicly independent equations, i.e. Equations (7), are
selected.
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Figure 4. Purdue EE Building Data, Frames 43, 42, 48, from left to right

Model x RMS
(pixels)

y RMS
(pixels)

Model 1 1.48 1.40
Model 2 1.43 1.37
Model 3 1.43 1.37
Model 4 1.43 1.37

3F’s 1.29 1.95
2F’s 1.24 2.01

Table 3.  Image Transfer Experiments
with Purdue EE Data, 8 control points,

8 check points

2.4.3  Purdue EE Building Data.  The Purdue EE building data set consists of three convergent photographs taken
from a parking garage approximately 30-50 meters away from the Electrical Engineering Building on the Purdue
University Campus; see Figure 4.  Two pictures were taken from the top level of the garage (43 and 42), while one was
taken from ground level (48).  Photographs were taken with a 75mm hand-held camera, and the diapositives were
scanned at 15 micrometers.  The results for image transfer to photograph 48 are shown in Table 3.

2.4.4  Discussion of Image Transfer Results.  Results from these three data sets show that provided that degenerate
cases do not exist, Models 2 and 3 will converge and their results will be the same as in Model 4.  Thus, for the
remainder of the paper results from Models 2-4 will be combined and printed as if the same model.  Models 2-4 are
rigorous in the sense that they all linearize with respect to the observations, unlike Model 1 which may give
unpredictable results.

As for the F-matrix technique, the technique that uses all three F matrices
and their associated constraints is less susceptible to noise, as shown
clearly by comparing the last two rows of Table 1 for 25 micrometers of
noise.  Although not as robust of a technique as collinearity, F-matrix
techniques have the benefit of being applicable to those parts of the scene
where points can be observed on two images only.

3 OBJECT RECONSTRUCTION

Section 2 described techniques to first establish the relationship between
the image coordinates on three photographs.  Once the image-to-image
relationship is established, the introduction of known 3D control points
allows us to solve for the 3D projective transformation matrix.  This 4 by 4 matrix is used to transform object points
from model to ground coordinates, and similarly to transform the camera transformation matrices from relative to
absolute.  Therefore, ground coordinates of new points observed on two or more photographs can be computed, and the
physical camera parameters can be estimated from the absolute camera transformation matrix.

3.1 3D Projective Transformation Matrix

For the general case of uncalibrated cameras, the model coordinates computed using relative camera transformation
matrices are in a 3D non-conformal system that requires a 3D projective transformation to obtain ground coordinates in
a 3D conformal system.  After the 3D model coordinates have been computed for all of the points, the next step is to
compute the 15 elements of the non-singular 4×4 projective transformation matrix, H.  Since three equations per point
can be written, a minimum of 5 points is required to solve for the 15 elements of H. (Note that the (4,4) element of H is
set to unity.)  With more than 5 points, a linear least squares solution is applied.  The 3D projective transformation H is
from projective ground space to projective model space.  The relations for coordinates and transformation matrices are
given by:

[ ] [ ]TT
r ZYXHZYX 11 ≈ (12a)

Edward M. Mikhail



590 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B3. Amsterdam 2000.

[ ]
434343 ×××

−=
=

AMSAMP

HPP r

M
(12b-c)

Since Equation (12a) implies equality up to a scale factor, we write three condition equations by dividing each of the
first three equations in (12a) by the fourth equation.  Once solved for, the H matrix may be used as in Equation (12a) to
compute absolute ground coordinates, or as in (12b) to compute the absolute camera transformation matrices.

The photogrammetric camera parameters can be extracted from the camera transformation matrix, P, in Equation (12c)
in which the matrix A is a function of xo, yo, and f, for the standard case of three interior orientation parameters.  The
matrix M is an orthogonal rotation matrix, i.e. a function of three independent rotation angles, ω,ϕ,κ.  S is a vector of
the three ground coordinates of the camera perspective center, XL, YL, ZL.  The details of an algorithm for extracting
camera parameters can be found in [Barakat and Mikhail, 1998] and [Faugeras, 1993].

3.2 Multiple Frame Simultaneous Ground Point Intersection

Following are the two condition equations for each image point on each image, i, that are used to solve for the ground
coordinates of an object point (X, Y, Z):

( ) ( )
( ) ( ) 0

0

2423222134333231

1413121134333231

=+++−+++=

=+++−+++=
iiiiiiii

iy

iiiiiiii
ix

pZpYpXppZpYpXpyF

pZpYpXppZpYpXpxF

i

i (13a-b)

where jk
ip  is the (j,k) element of the absolute camera transformation matrix for image i.  An approximate linear

solution is obtained by treating the observations and P elements as constants and the object point coordinates as
parameters, and using the least squares criterion of minimizing the sum of the squared errors to the equations.

Although some published object reconstruction techniques stop here with the linear solution, we perform a rigorous
refinement by linearizing Fx and Fy with respect to parameters and observations.  Therefore, we use the general least
squares model, fBAv =∆+ ; see [Mikhail, 1976].

3.3  Experiments

For each of the data sets in Section 2.4, object reconstruction experiments are run and the results are evaluated by check
points.  The object reconstruction steps are:  1) establish the relationship between the image coordinates only by solving
for the T elements or the aij and bij, which is also the first step for image transfer; 2) Use a minimum of 5 ground control
points and the relationship shown in Equation (12a) to solve for the 15 elements of the 3D projective transformation
matrix, H; and 3) Compute the check point ground positions using the image coordinates and the absolute camera
transformation matrices and compare to their known values.  For each of the data sets, results are shown for both the
linear solution and the nonlinear refinement.  Two-frame versus three-frame ground point intersections are also
considered.

Table 4 shows the results from object reconstruction with simulated data, using image coordinates on the two oblique
frames to compute the check points.  The non-linear refinement does not improve the results for this data set.  Models 2-
4 show some improvement compared to Model 1.

10 µm perturbation 15 µm perturbation 25 µm perturbation
Method Model

#
X RMS
(meters)

Y RMS
(meters)

Z RMS
(meters)

X RMS
(meters)

Y RMS
(meters)

Z RMS
(meters)

X RMS
(meters)

Y RMS
(meters)

Z RMS
(meters)

1 0.04 0.05 0.11 0.12 0.15 0.20 0.13 0.15 0.23Linear
 2-4 0.14 0.08 0.17 0.13 0.08 0.12 0.14 0.13 0.19

1 0.04 0.07 0.12 0.12 0.15 0.20 0.13 0.13 0.22Non-
Linear 2-4 0.14 0.08 0.17 0.13 0.07 0.12 0.14 0.13 0.20

Table 4.  Object Reconstruction with Simulated Data, 8 control points, 7 check points
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Table 5 shows the results of object reconstruction using both real data sets; i.e., Fort Hood and Purdue EE.  With Fort
Hood, cases are shown with ground point intersections using only the two near vertical frames versus using all three
frames simultaneously.  There are 19 control points and 18 check points.  With the Purdue EE data set, results from
intersection of frames 42 and 43 are compared to three frame simultaneous intersection.  For this close range data set,
there are 8 control points and 8 check points.  Note for the Fort Hood data set that the nonlinear refinement offers
significant improvement over the linear solution, especially for the three-frame case.

Fort Hood Data Set Purdue EE Data Set
2 Frame Intersection

RMS (meters)
3 Frame Intersection

RMS (meters)
2 Frame Intersection

RMS (meters)
3 Frame Intersection

RMS (meters)Method
Model #

X Y Z X Y Z X Y Z X Y Z
1 0.07 0.09 0.17 0.25 0.80 1.24 0.33 3.79 0.51 0.23 2.63 0.35Linear

2-4 0.06 0.09 0.14 0.12 0.49 0.72 0.16 0.34 0.06 0.15 0.34 0.08
1 0.07 0.09 0.17 0.23 0.20 0.53 0.33 3.79 0.50 0.22 2.62 0.35Non-

linear 2-4 0.06 0.07 0.14 0.04 0.04 0.09 0.16 0.34 0.06 0.16 0.34 0.08
Table 5.  Object Reconstruction with Real Data Sets

4 CONCLUSIONS

Invariance techniques are relatively fast and efficient, and are especially useful for application to imagery obtained from
uncalibrated cameras and with unusual geometry.  By recognizing photogrammetric implications and applying the
necessary constraints, improvements in robustness and accuracy for invariance techniques can be obtained.  Although
these refined techniques are attractive, the simpler linear techniques can not be abandoned since they provide reasonable
initial approximations for the more robust nonlinear techniques.  More specifically, it was reinforced that to establish
the relationship between image coordinates of a triplet of images, there should be three independent equations per point
and 18 independent parameters.  Finally, for a rigorous solution to either the image transfer or object reconstruction
problem, linearization with respect to the observations is required.
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