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       ABSTRACT

The need for variety and better accuracy of the map products used in the rapidly evolving GIS technology has necessitated the
use of analytical techniques in photogrammetric data processing. The ready availability of small but powerful computers which
are able to support the computational requirements of rigorous solutions, and the flexibility to use analogue or digital input
imageries in the mapping process have combine to make analytical procedures a routine utility. Quite often in all applications,
the basic problem involves the extraction of spatial entities from images, and almost invariably, the most accurate mapping is
achieved through rigorous treatment of stereo images. The software modules used in the operations are developed based on
appropriate mathematical representations of the relationships between measurements of image features and the corresponding
spatial objects.

From an abstract geometric consideration, each image of a stereogram may be visualized as a 3-D vector space whose elements
are composed action, and the calibrated principal constant of the camera or sensor. The object space, in most practical cases,
may also be represented simply as a 3-D vector space. When suitable coordinate systems are attached to these spaces, they
become Euclidean spaces in which points may be represented simply in position vectors. This space conceptualization enables
the use of vector symbology and linear algebra to develop compact computational algorithms for the reduction process.

Although the theoretical bases of the mathematical formulations used in the treatment of a stereogram are well known and in
fact vector notations have been used to present them. Nevertheless, the computational schemes often adopted are based on long
hand approach in which symbols are used to represent single variables, involving tedious algebraic manipulation. This
inevitably leads to complicate computational procedures, devoid of clear geometric meaning and insightful appeal. This paper
applies the ARDOVS concept, an analytical tool, to the solution of the stereogram problem. It is shown how this methodology
provides a compact and consistent solution scheme which is easy to understand.

1. INTRODUCTION

The need for variety and better accuracy of the map products used in the rapidly evolving GIS technology has
necessitated the use of analytical techniques in photogrammetric data processing.  The ready availability of small but
powerful computers which are able to support the computational requirements of rigorous solutions, and the flexibility
to use analogue or digital input imageries in the mapping process have combined to make analytical procedures a
routine utility.  Quite often in all applications, the basic problem involves the extraction of spatial entities from images,
and almost invariably, the most accurate mapping is achieved through rigorous treatment of stereo images.  The
software modules used in the operations are developed based on appropriate mathematical representations of the
relationships between measurements of image features and the corresponding spatial objects.

From an abstract geometric consideration, each image of a stereogram may be visualized as a 3-D vector space (Figure
1) whose elements are composed action, and the calibrated principal constant of the camera or sensor. The object
space, in most practical cases, may also be represented simply as a 3-D vector space.  When suitable coordinate
systems are attached to these spaces, they become Euclidean spaces in which points may be represented simply in
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position vectors (figure 1).  This vector space conceptualization enables the use of vector symbology and linear algebra
to develop compact computational algorithms for the reduction process.

Although the theoretical bases of the mathematical formulations used in the treatment of a stereogram are well known
and in fact vector notations have been used to present them, nevertheless, the computational schemes often adopted are
based on long hand approach in which symbols are used to represent single variables, involving tedious algebraic
manipulation.  This inevitably leads to complicated computational procedures, a devoid of clear geometric meaning
and insightful appeal.  This paper applies the ARDOVS concept [Olaleye 1992], an analytical tool, to the solution of
the stereogram problem.   It is shown how this methodology provides a compact and consistent solution scheme which
is easy to understand and general application.
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       Figure 1: Image vector spaces (a) left image space (b) right image space

To begin with, the term "ARDOVS" is an acronym for "Apparent and Real Directions of Vector Spaces" and states
that to every photogrammetric vector space, there is a set of natural directions (as seen by elements within space) and a
set of apparent directions (as seen by elements outside the space.  When two such spaces are to exchange elements, one
space is always the fixed space, which in the ARDOVS concept is called the R - space with natural directions i,j,k, and
apparent directions R1,R2,R3,  (figure 2a).  The other space is then the movable space with natural directions i',j',k', and
apparent direction C1,C2, and C3 (Figure 2b).
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Figure 2: Natural and Apparent Direction Axes of Vector Spaces: (a) the R-space
                                                                                                                 (b) the C-space

The apparent direction vectors constitute the row- and column spaces of a 3-D rotation matrix and are expressed
analytically as (Olaleye 1992):

R- Space direction vectors:
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Where kfw ,,  are the positive angular rotations about the i,j,k, axes that will bring the apparent axes of the movable
space into the same orientation as the fixed space.

From an applications viewpoint, the ARDOVS concept serves a dual purpose.  First, it may be used to simplify the
derivation of formulations needed to transform elements between two vectors spaces if the apparent directions and
other parameters are given: and secondly it may be used to derive computational algorithms to determine the apparent
direction vectors and other parameters for use in subsequent applications.  In this paper, we explore the first application
of the concept, and for this, we make the assumption that the exterior orientation parameters (R.O + A.O) of the
stereogram are already computed and that the imaging sensor has been properly calibrated.  For our purpose, we shall
use the exterior orientation data in two stages.  First, we use the relative orientation information (R.O) to evaluate eqns
1 & 2 for the apparent direction vectors needed for the image space operations.  Secondly, the absolute orientation
information (A.O) will be used to evaluate eqns. 1&2 are evaluated with the R.O. elements, they refer to image space
apparent directions and do not carry a superscript.  When evaluated with the A.O. elements, they refer to object space
directions and carry the star symbol (*) as a superscript.

Yet, the successful use of the ARDOVS techniques depends on correct identification of the R-space and the C-space
in any problem situation.  For the stereogram problem, this is easily achieved by recognizing that two image spaces
(i.e. the left image space, the right image space) and an object space are involved, and by logical reasoning, the fixed
space is the object space while the image spaces are the movable spaces.  Therefore, for operations involving the image
space and the object space, the image space is the C-space while the object space is the R-space.  Moreover, the
stereogram reduction process adopted in this paper involves transfer of elements between two image spaces which,
according to the ARDOVS terminology, are moving and therefore are both C-spaces.  Incidentally, the ARDOVS idea
does not apply to two C-spaces, hence we must regard one of the image spaces as fixed and the other moving.  The
choice of one or the other space is purely a matter of preference, just similar to the usual practice in dependent pair
relative orientation in which any of the images may be chosen as fixed while the other is moved.  Consequently in this
paper, the three vector spaces concerned are identified as follows:

(a) for the image space operations:- the right image is a movable or C-space while the left image is fixed  or R-space (see
figure 4a & b)

(b) for the object space operations:- the left image space is the C space while the object space is the R-space (see Figure 3c
& figure 4)

This convention implies that the left image space will have its axes re-assigned when changing from the image space
operation (see Figures 3a & b) to the object space operation (see Figure 3).  Therefore, the left image space will be
alternately referred to as the image R-space to object C- space is effected through a re-labelling of the left image axes.
However, as said earlier, the apparent directions needed for all these operations are obtained by evaluating eqns. 1&2
with R.O and A.O elements respectively.

Having identified the spaces involved in the reduction of a stereogram, the application of the ARDOVS technique is
premised on three operational rules (Olaleye 1992).

James Olaleye



661International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B3. Amsterdam 2000.

1. An element of one space can only cross to the other space by projection onto the apparent directions of the new space.
If the scales of the two spaces are different, the projection must be scaled to conform to the new space.

2. Any element moving from the C-space to the R-space must add to itself after projection, the vector which located the
origin of the C-space.

3. Any element moving from the R-space to the C- space must reduce itself before projection, by the vector which locates
the origin of the C-space.
These rules, aided by simple vector algebra produce the reduction equations.  As will be demonstrated with an
example, the ARDOV's development leads to routine simplicity of the reduction process.  However, a key factor to
bear in mind in the present problem is that the image R-space and the object C-space are one and the same space
except that depending on the operation being performed, its axes are labelled with the appropriate direction vectors.
Also, when the axes direction vectors carry the superscript (*) notation, they refer to an object space operation,
otherwise, an image space operation is implied.

James Olaleye
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           Figure 3: R-space and C-space notations in the ARDOVS concept
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8

       Figure 4: Axes notations for image C-space and Object R-space

2. ALGORITHM FOR REDUCTION TO THE OBJECT SPACE

The problem is to rigorously combine a pair of conjugate image space vectors to product the corresponding object
space position vector.  The operations involved in the forward reduction of a stereogram may be summarized as
follows: vector transformation from an image C-space to an image R-space and by axes relabelling to an object C-
space to an object R-space.  This is achieved by application of the ARDOVS operational rules 1&2 to the tight image
space vector (Pa') in Figure 5.  This produces the left image space (R-space) vector polygon in figure 5), which is
rigorously adjusted to minimize the parallax vector and to produce an equivalent image R-space element T.  The axes
of the image R-space are relabelled as an object C-space and a further application of rules 1 & 2 projects the vector
element T onto the object C-space and a further application of rules 1 & 2 projects the vector element T onto the object
space axes to produce the required object space information (see Figure 6).  The full theoretical development of this
algorithm is treated in Olaleye (1992).
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                Figure 5: Image space intersection and parallax vector
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      Using the ARDOVS operational rules 1 & 2, an element Pa' of the right image space (C-space)
       translates to the image space (R-space) element as:

                      

















+=

a

a

a

PR

PR

PR

bg
/

3

/
2

/
1

.

.

.

  or   g = b + T 2 (3)

            where:

                       
















=

a

a

a

PR

PR

PR

T
/

3

/
2

/
1

2

.

.

.

(4)

            b is the vector connecting two camera stations (i.e. photobase) and has the components
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           Naturally, in the ARDOVS theory, an element of the left image sees only the natural direction axes,
           therefore, we may represent the conjugate left image element as :
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Theoretically, vector g (eqn.3) should be equal to vector T1 in the R -space, i.e. the vector triangle in Figure 5 should
close as shown in Figure 3c.  This implies that the vectors T1 and T2 should intersect at a point.  However, in reality,
they do not intersect at a point due to some residual parallax as shown in figure 5.  Therefore, we employ mathematical
optimization strategy to stretch the vectors T1 and T2 along their direction to a point at which the parallax vector P is of
minimum possible length.  This is done in the R-space.

Let P be the parallax vector signifying the want of intersection of the two conjugate rays (dashed line in Fig. 4).  Also,

let the unit vectors corresponding to T1, and T2 be represented by T 1 and T 2 respectively, then from the vector
polygon in Fig 4. we can write the vector equation

                 2211 TsTsbP +−=                                      (7)

We employ the least squares optimization technique to determine values for s1, s2 which minimize the length of vector
p.  For this we formulate a vector space functional involving P whose stationary values yield the required values for s1

and s2.  Using the inner product vector functional we have :
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Employing vector differential operators (Olaleye 1992), we obtain the normal equations from (8) as
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but 1T  and 2T  are direction vectors, so that (9) may be written as:
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The determinant of the normal equation (10) is given by
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which is non- Zero unless the two rays are parallel. Then the solution to (10) is
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The values of s1, s2 obtained from 12 provide the minimum length of the want of intersection of the conjugate rays.  In
practice, the two rays are assumed equally weighted so that we may locate the actual point of their intersection as being
midway along vector p.  Hence, the vector corresponding to this point of intersection may be written as:

=T T = PTs
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or by substituting (7) for p and simplifying, we obtain
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2
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(13)

Applying the ARDOVS operational rules 1&2 (and noting that the axes of the image R- space are now relabelled for
an object C-space), the object space location represented by the resulting vector T may be computed by the following
vector product equation (See Olaleye 1992):
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  where
*
3

*
2

*
1 ,, RRR  are the apparent direction vectors of the object R-space. These are obtained by evaluating the vector

expression in (6) using the computed absolute orientation elements.

s is the scale factor for the projection also determined by absolute orientation computation and

Po is the object space vector which locates the origin of the image space, also obtained from absolute orientation
computation.

Substituting (7) in (8) we have
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In order to further explore the geometric significance of this equation,
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applying the distributive property of inner products of vectors to equation 9 and simplifying we have:
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This may be put in the form:
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Where the vector B  is the equivalent of the airbase for the stereogram.
By relating equation 20 to Figures 3 & 4, it is evident that the forward reduction of conjugate image space vectors is
achieved by a series of inner products of vectors.  Equation 20 applies to every point appearing in the stereogram.

Computational Steps:

1. Construct the apparent direction vectors of the image R-space and the object R-space i.e.R1, R2, R3 and
*
3

*
2

*
1 ,, RRR  using the parameters of R.O. & A.O. respectively.  Also compute the following (note that Pa and Pa' are

conjugate image space vectors)
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2. The object space coordinate vector is then computed as
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3. Repeat steps 1-2 for all points

3. Algorithm for object space to conjugate image spaces

Conceptually, the task here is to resolve the object space vector element into its left and right image space vector
elements.  The operations involved may be summarized as follows: vector transformation from an object R-space to an
object C-space (and through axes relabelling) to an image R-space to an image C-space.  This is achieved by
application of the ARDOVS operational rules 1 & 3 to the object space element (PA) in Figure 5.  This produces an
object C-space element T (Figure 5). The axes of the object C-space are relabelled as an image R- space and a further
application of rules 1 & 3 projects the vector element T onto the left and right image spaces to produce the conjugate
image space vectors (See figure 6).  Note that the appropriate scales are applied to the projection. The theoretical
development of this algorithm is treated in Olaleye (1992).  The algorithm is listed below:

      Figure 5:  object R-space top object C-space Transformation
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Figure 5: Object R-space to object C-space Transformation

                                                                                       (a)

   Figure 6: Image R-space to conjugate image C-shape Transformation
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Applying the ARDOVS operational rules 1 & 2 we may write:
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Tk
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2 bTC
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Where s is the scale from the object to image space obtained from absolute orientation computation. s1 and s2 are the
image space scales.

For the left image we have:
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and for the right image we have
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where C1, C2, C3 are obtained by evaluating equations 2 with the relative orientation information 
*
3

*
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*
1 ,, CCC  are

obtained by evaluating equations 2 with he absolute orientation information.

Computational steps

1.  Compute C1,C2, C3 and 
*
3

*
2

*
1 ,, CCC  from R.O and A.O elements.

2.  Compute
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Let image vector:
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and for the right image we have
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4. CONCLUSION
It is obvious from the presentation that the vector space approach offers many advantages. Formulations which
otherwise look cumbersome are made very compact and incitefully  appealing. Computational examples will be given
in the second part of this paper.
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