Gamal Seedahmed

MODEL-BASED AUTONOMOUS INTERIOR ORIENTATION

Gamal Seedahmed, Toni Schenk
Department of Civil and Environment Engineering and Geodetic Science
The Ohio State University
Columbus OH 43210-1275 USA

{seedahmed.1,schenk.2}@osu.edu
TECHNICAL COMMISSION III

KEY WORDS: Autonomous Interior Orientation, Hough Transform, Least Squares Adjustment.

ABSTRACT

The model-based approach to autonomous interior orientation is an entirely novel approach. It is driven
by the simple structural description that one can build for a fiducial mark. In this research we have
focused on recognizing and measuring the fiducial marks automatically. This is motivated by the desire
to establish an automation chain in digital photogrammetry, starting with the interior orientation. We
benefit from a simple fact that fiducial marks are artificial objects projected onto the film during
exposure time. Most every fiducial has a simple, regular shape. This invites us to represent the fiducial
marks as a structural description and to detect the structural elements in the image. The CAD design of
the fiducial mark and the optical parameters of the projection lens are used to build a geometric model
for the fiducial mark. Edge detection is performed to generate image primitives. The Hough Transform
is executed over the edge image for identification and approximate localization. Least Squares
Adjustment is used for precise localization and the affine transformation is used to compute the
transformation parameters. The results of the Hough Transform, represented in the accumulator array,
are analyzed via quadratic conic section fitting. The analysis of the fitted conic section renders valuable
information regarding the surface complexity in terms of noise and the surrounding structures to the
fiducial mark. A fast version of the Hough Transform, for the peak detection, is implemented via
histogram peak detection. The developed technique is capable to handle noisy and partially detected or
missing information of the fiducial mark. The collected evidence in terms of hypothesis generation,
verification, and validation allows us to define a percept sequence to reason about the recognition of
the fiducial mark.

1 INTRODUCTION
1.1 Photogrammetric Tasks

The main task of photogrammetry-analog and digital alike-is to reconstruct the object space from
images. This reconstruction can be considered as the inverse process of image formation. The latter
proceeds from the scene to the image while reconstruction begins with images and ends with a suitable
description and representation of the scene. One task of reconstruction deals with determining positions
of features in the object space from known quantities in the image space. Before computing positions in
the object space, two major tasks must be solved, however. For one we need to determine the exterior
orientation of the camera- its position and attitude referenced in the object space. The other prerequisite
is the interior orientation, the subject of this study.

Image orientation is a prerequisite for any task involving the computation of three-dimensional
coordinates. Image orientation refers to the determination of parameters describing specific
photogrammetric models for mapping geometric primitives such as points, lines, and areas from one
coordinate system to another. A coordinate system relevant to photogrammetry is the object, the model,
the image, and the pixel or stage coordinate system (Heipke, 1997). Due to their importance, image
orientation has always been a focus of attention in the photogrammetric community. The interior
orientation is the starting point in image orientation.

1.2 Anatomy of a Fiducial Mark

The fiducial marks are located on the upper surface of the inner cone of an aerial camera. They are
located either at the four corners of the format opening and/or in the center of the four sides. Fiducial
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marks are registered onto the film by projecting an image of the mark through a small lens housed
inside the cone (Schenk, 1999). Since each fiducial is designed and projected separately, small
variations may occur.

Fiducial marks have typical patterns, made up of geometrical structures including straight-line
segments, crosses, solid squares and circles, and annulus, see Fig. (1). Most of the structures serve the
identification process and lend themselves as suitable candidates for a Hough Transform. The actual
fiducial center, whose coordinate is known from camera calibration, is a small disc, just slightly bigger
than the measuring mark of the analytical plotter (Schenk, 1999).

Fiducial Image CAD Drawing of Fiducial

Fig. 1: A portion of a fiducial image and its CAD design provided by the manufacturer.

1.3 Overview of Automatic Interior Orientation

The automation of the interior orientation needs to concentrate primarily on recognizing and measuring
the fiducial marks. In general there are many different ways to automatically or semi-automatically
locate the fiducials on the digital images, such as manual identification or providing an approximate
position of the fiducial and then determine its center by using an automatic mensuration technique e. g.
mathematical morphology or fully automatic fiducial identification and mensuration (Lue, 1997).
Interior orientation in most existing softcopy workstations requires at least one or two fiducials to be
measured manually before the remaining fiducials can be automatically determined. In general, interior
orientation is approached as a template-matching problem augmented with least squares matching
(Lue, 1997) or with a modified Hough Transform for rough localization (Kersten and Haering, 1997).
Also interior orientation is solved via binary correlation with a hierarchical approach for rough
localization and gray level correlation for subpixel accuracy (Schickler and Poth, 1996).

In this study, we benefit from the fact that fiducial marks are artificial objects projected onto the film
during the exposure time. Based on this fact, the interior orientation problem is approached as a model-
based object recognition task utilizing most of the available prior knowledge regarding the fiducials, in
terms of providing the CAD design data, their shape, their location, the camera optics e. g. the
projection factor of the fiducials and the pixel size of the image. At the identification level the interior
orientation is solved as an object-recognition problem, and at the precise localization level it is solved
as an ordinary least-squares adjustment problem.

1.4 Objective of Autonomous Interior Orientation

A system is autonomous to the extent that its behavior is determined by its own experience. In the
context of this research and our view of digital photogrammetry we are going to use Schenk’s (1999)
definition of autonomous “as if the process is really 100% automatic and does not require human
intervention- sort of a black-box- then the word autonomous can be used to describe the system”.

The objective of autonomous interior orientation can be summarized in the following points. The main
objective is the identification and approximate localization, subpixel localization of fiducial centers,
and computation of the transformation parameters between the pixel coordinate system and the photo
coordinate system. Identification includes the task of determining which of the fiducial marks is
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detected. Subpixel localization is required because the pixel size is most likely larger than the expected
precision of the fiducial centers. Another objective is the requirement for a general, fast, accurate,
reliable, and robust solution accommodating different types of fiducial marks. A system is general if it
can cope with different problems as they may occur in the production environment. A third objective is
the system should cope with image resolution where the fiducial centers have been lost; as long as the
fiducial mark is still identifiable, the location may be determined from the features that describe the
fiducial mark (Seedahmed and Schenk, 2000).

2 MODEL-BASED RECOGNITION OF FIDUCIAL MARKS

The object recognition problem in general, can be defined as a labeling problem based on models of
known objects. Formally, given an image containing one or more objects of interest and a set of labels
corresponding to a set of models known to the object recognition system, the system should assign
correct labels to regions, or a set of regions, in the image.

An object recognition system must have the following components to perform the task: Model-
database, feature detector, hypothesizer, and hypothesis verifier (Theodoridis and Koutroumbas, 1999).
The model database contains all the models known to the system. The information in the model
database depends on the approach used for recognition. It can vary from a qualitative or functional
description to precise geometric information. In this study the model database contains information
about the CAD design of the fiducial mark, its optical projection factor onto the film, and the pixel size
of the image.

3 HOUGH TRANSFORM

The basic idea behind any transform-based features is that an appropriately chosen transform can
exploit and remove information redundancies, which usually exist in the set of samples obtained by any
measurement techniques. If the transform is suitably chosen, transform domain features can exhibit
information-packing properties compared with the original input samples (Theodoridis and
Koutroumbas, 1999).

The last few years have seen an increasing use of parameter estimation techniques that use a voting
mechanism. One of the most popular voting methods is the Hough Transform (HT). The HT is
considered as a parameter estimation strategy based on the statistical mode. More common strategies
such as least- squares error fitting are based on the statistical mean. The HT has achieved engineering
importance in several areas of image understanding (Brown, 1986), (Leavers, 1992). Since its early
formulation, the Hough Transform (Hough, 1962) has undergone intense investigation, which have
resulted in several generalizations and a variety of applications. The basic mechanism is a voting
scheme in the parameter space. The parameters that receive a higher vote are declared winners,
followed by a de-Houghing to find the required curve at the image space using the detected parameters.

In order to gain a basic understanding of HT we will describe the straight-line algorithm. A straight-
line in the sense of HT is a set of collinear points, see Fig. (2). The HT is a mapping / from R’ into the
function space defined by:

h:(x,y) > p=xcosf+ ysind (1)
1
Y 0
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plane
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3
©
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x \ p

Fig. 2: The polar representation of a line and its Hough space.

International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B3. Amsterdam 2000.



Gamal Seedahmed

The HT takes each of the points (x;, y;) to a sinusoidal curve in the (p,0) plane. The property that the
Hough algorithm relies on is that curves that have common intersection points in the (p,0) plane belong
to the same line in the (x,y) plane and they form a peak. This peak should be detected with its
associated parameters (p,0). These parameters are used in a de-Houghing step in order to trace a line
associated with these parameters. The polar representation is preferred over the slope-intercept to
avoid the difficulties in vertical line detection.

The HT can be implemented easily for any analytic curve by interchanging the role of the observations
and parameters. For a circle with a known radius, the observations are the coordinates along the
circumference and the parameters are the circle centroid.

4 PRECISE LOCALIZATION

The previous section addresses the problem of identification and approximate localization of analytical
curves. With the HT technique we know where it is, but we have not made any effort yet to determine
its position as accurately as possible. The success with identifying the major structures of the fiducial
mark suggests taking a different approach to determine its center. That is, we compute the center from
the structural elements rather than directly from the center pixels. In our implementation we used two
concentric circles to indicate the center. The center will be determined by Least Squares adjustment
(Schaffrin, 1997). The mathematical model for the two concentric circles is:

(xi _xo)2 +(y,~ _yo)2 _Rl =€

(2)
(x;-x) +(;-¥,) -R, =¢,

where (x;, y; are the pixels on the outer circle with known radius Ry, (x;, y;) are the pixels on the inner
circle whose radius is Ry, and e;, €; are random errors.

The proper handling of the stochastic properties of the model will be via condition equations with
parameters. The model of condition equations with parameters states:

2 p-1
Bm+rx2(m+r) (y2(m+r)x1 - e2(m+r)x1) = Am+r><m§mx1 e~ (0’ Oy P ) (3)

with rank (A) <min (m+r, m)=m.

B: this matrix contains the partial derivatives with respect to the observations.

y: the observed pixel coordinates.

e: the true error vector.

A: this matrix contains the partial derivatives with respect to unknown parameters.

&: the vector of the true unknown parameters (fiducial center).

P: weight matrix of the observations.

For the above-mentioned stochastic model we need to introduce an estimation based on geometric
or stochastic approach, such as least-squares adjustment to find an estimate for the unknown
parameters.

5 ALGORITHM

Before the identification of the fiducial marks (FM), image patches of reasonable size that contains the
FMs are extracted using a priori knowledge about their expected locations in the image, see Fig. (3).
The process starts by running an edge operator over the image patches, e.g., Canny’s edge algorithm
with its associated parameters. For our experiments we use aerial photographs acquired by Wild RCI0.
Since the circular elements of the FMs are unique compared to their linear elements, the Hough space
for the two circles using their known radii is generated first. After generating the Hough space for the
two circles, a peak detection process is performed for the identification and an approximate
localization, and then this step is followed by a de-Houghing to trace the pixels which belong to each
circle in the edge image. Simply substituting the parameters of each circle in their corresponding
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equation does the tracing, and every pixel in the edge image satisfying these equations will be reported
as a potential pixel candidate. Based on the detected FM centers, a window is opened in the edge image
to restrict the search area for linear structural elements of the fiducials. The Hough space is generated
for the linear elements followed by peak detection and pixel tracing. Since the linear elements are
known with specified orientation, the peak search in its Hough space is restricted to a predetermined
range of orientation, namely, 35-55 degrees. and 125-145 degrees. The linear elements of the fiducials
support only the identification process and not the precise localization of the FM. Precise localization
of the fiducial centers is based on least-squares adjustment using the two radii and the pixels along the
circumferences of the two circles as observations.

When two fiducial marks have been successfully recognized, a similarity transformation can be
performed to establish an approximate relationship between the pixel coordinates and the camera
coordinates. This approximate transformation is generally very helpful in defining the search area for
the third fiducial if we have a difficulty in its identification using the HT. By using the similarity
transformation with the developed techniques we benefit from the available strategies to come up with
an intelligent solution.

The peak searching in the Hough space is implemented via histogram searching, and this casts the HT
as a fast version in terms of peak detection. Also the histogram provides an elegant mechanism of
multiple peak detection without any further search. The histogram memory allocation is determined
during the run time based on the expected feature size.

6 EXPERIMENTS

Fig. 3: a, b, ¢, and d are fiducial patches belong to the upper left corner (UL), upper
right (UR), lower left (LL) and lower right lower (LR) corners of 8k x8k image.
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Fig. 4: The detected peaks for the Inner and Outer Circles respectively.

Location | Radius inpixels | i _center | j center | Traced Analytical Success
Perimeter Perimeter
UL Inner 26 214 258 156 163.38 Yes.
UL Outer 33 214 257 198 207.37 Yes.
LL Inner 26 405 284 158 163.38 Yes.
LL Outer 33 405 284 185 207.37 Yes.
UR Inner 26 162 177 127 163.38 Yes.
UR Quter 33 162 177 183 207.37 Yes.
LR Inner 26 132 280 143 163.38 Yes.
LR Outer 33 132 279 203 207.37 Yes.

Table 1:The results of HT for the FM with their pixel tracing.

Results of Precise Localization:

UL UR
j=257.245 i=213.872 j=_l76.9_74 i=l‘6l .98
Dispersion Matrix: Dispersion Matrix:
0.002 -1.1le-5 0.003 4.5e-5
-1.1e-5 0.002 4.5¢-5 0.003
Redundancy=352 Redundancy=308
ol =0.356 ol =0.551
LL LR
j=284.007 i=405.034 j=279.362 i=132.275
Dispersion Matrix: Dispersion Matrix:
0.003 4.5¢-5 0.002 1.0e-5
4.5¢e-5 0.003 1.0e-5 0.002
Redundancy=341 Redundancy=344
2 —
ol =0.486 o, =0.342

The identified and precisely localized FM are used with their calibrated FM to determine the affine

transformation parameters, which relate the pixel, coordinates with the photo coordinates. The affine
transformation can be represented by:

X pivet =00, X cotiprared + 1Y catibrarea T+ €

(4)

Yoier =20, X cutivratea + €2 ¥ catibratea + € v

The above representation of the affine transformation will allow treating the calibrated FM as error free
observations, and the stochastic property of the model can be handled via Gauss-Markov model.
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Calibrated Fiducial Coordinates in mm are:
[x=-105.993, y=106.00], [x=-106.001,y=-106.008], [x=106.006,y=-106.008], [x=106.016,y=105.997].

The Transformation Parameters are:

a;=4267.915 b,=35.706 ¢,=-0.2471.
a,=4173.123 b,=-0.2471 c¢,=-35.709
Residuals in Pixel:

[Rx=0.1897,Ry=-0.1918],[Rx=-0.1897,Ry=0.1918],[Rx=0.1897,Ry=-0.1918],[Rx=-.1897,Ry=0.1918].

The estimated variance component is:

cl=0.1

456

7 HOUGH SPACE ANALYSIS

The Hough space is analyzed via a quadratic surface. This surface is centered at the detected peak in
the Hough space, see Fig. (4). After determining the coefficients of the surface much valuable
information can derived from this surface, like translation, rotation, and stationary point classification
(Strang, 1988), (Leon, 1998). The quadratic surface equation is:

F(i,j) =k, +kyi+k,j+k,i’*+kgij+kyj* 5)

The computed coefficients of this surface render valuable information in the following format:

This surface has been translated vertically from the standard position if the coefficients of
i and i are both nonzero.

This surface has been translated horizontally from the standard position if the coefficients
of j* and j are both nonzero.

This surface has been rotated from the standard position by an angle & that is not a
multiple of 90° when the coefficient of ij is not zero.

By computing the first and the second derivative of the surface we can build the Hessian
matrix, from which we can compute the eigenvalues (4;, 4,). The eigenvalues can be used
to classify the surface at the critical points e.g. the origin.

Circle | K, K, K, K, Ks Ks Orient | A, A SurDsp
Inner 9.08 -.0369 | .374 -.0093 | .0042 | .001 -11.1° | -.0196 | .0029 | Saddle
Outer | 10.63 | .0135 | -.693 | -.020 | -.0004 | -.0328 | 178.8° | -.0418 | -.0658 | Max

Table 2: Surface parameters and its derived properties for UL FM of the 8k x 8k image.

Circle | K; K, K; K, K; Ks Orient | ), M SurDsp
Inner | 8.08 .025 354 .0004 | .0027 | .042 1.844° | .0009 | .0853 | Min
Outer | 10.147 | -.069 | -.6235 | -.0129 | -.0086 | -.040 | 171.1° | -.0245 | -.0817 | Max

Table 3: Surface parameters and its derived properties for LL FM of the 8k x 8k image.

Circle | K, K, K; K, K; Ks Orient | A, M SurDsp

Inner

8.194 |.0064 | .300 .0105 | .00605 | .0169 | 111.8° | .0187 | .0362 | Min

Outer

10.364 | .0319 | -.6016 | -.0226 | -.0030 | -.0359 | 186.4° | -.0450 | -.0721 | Max

Table 4: Surface parameters and its derived properties for UR FM of the 8k x 8k image.

Circle | K; K, K; Ky K5 Ks Orient | ), M SurDsp
Inner | 8.3 .0247 | .348 -.0005 | -.0029 | .0218 | 3.8° -.0014 | .0439 | Sadlle
Quter | 10.56 | -.107 | -.586 | -.021 -.0023 | -.0377 | 176.1° | -0418 | -.0757 | Max

Table 5: Surface parameters and its derived properties for RL FM of the 8k x 8k image.
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8 ANALYSIS AND DISCUSSION

The proposed algorithm is tested over three images scanned at three different resolutions of 2k, 8k, and
18k (pixel size 111.05 pm, 27.37 um, and 12.56 pm). The algorithm is successfully identifying and
localize the FM at the three different resolutions. The 2k resolution is too coarse to detect the structural
elements of the FM. At the 8k and 18k resolutions the precise localization of the fiducial mark yields
an accuracy of 1/20™ and 1/30® of the pixel size respectively. This excellent accuracy is obtained
because all the pixels that have been identified as structural elements of the FM contribute to the
precise localization. The precise localization at the 18k moves the precision from sub-pixel to sub-
micron. Since the end product of the interior orientation is the transformation parameters between the
pixel coordinates and the photo coordinates, the results of the proposed algorithm and the calibrated
fiducial marks are successfully determine these parameters with a variance component corresponding
to 0.15 of the pixel size.

The Hough space analysis via quadratic conic section renders valuable information in terms of surface
properties. For instance, the shift parameters generated from different fiducial marks, which belong to
the same image, reflect the similarity of the fiducial marks structures. Also the orientation of the
surface and the eigenvalues of the Hessian matrix reflect the surface complexity. For the orientation
part, deviation from multiple of 90° reflect the complexity in terms of missing edge information, noise
effects, and/or the contribution from the surrounding structures to the fiducial mark, see tables (2), (3),
(4) and (5).

The hypothesis of the fiducial mark consists of many features, which can be realized, in a unary and
binary constraints. The two centroids define a binary constraint, see table (1). Pairs of lines with 45°
and 135° define unary and binary constraints. Also the shift parameters (K,) resulted from the conic
section fitting they can define a measure of similarity between the fiducial structures which can be
considered as a global constraint, see tables (2), (3), (4) and (5). For a detailed discussion see
(Seedahmed and Schenk, 2000).
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