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ABSTRACT

This paper describes a likelihood-based segmentation and classification method for remotely sensed images. It is based
on optimization of a utility function, described as a function of likelihood of all objects and their parameters. As the
likelihood or posterior probabilities are calculated per object rather than per pixel, the variance in (spectral) likelihoods
will be greatly reduced. From a users point of view the result has either a maximum probability for truth (likelihood) or
maximum utility (benefit). It includes a new approach for segmentation, which is based on criteria derived from local
average likelihoods instead of local means or variances, making the segmentation method much less sensitive to
radiometric outliers. Due to these capabilities the method represents a step towards operationalization of remote
sensing.This approach can also be seen as a framework for integration of external knowledge with image classification
procedures. To evaluate the concept, a software tool has been designed and used for experimentation. The result showed
that the per-object maximum likelihood performs much better than the per-pixel method. It led to higher classification
accuracy and explicit utilization of the geometrical and topological information about land use objects and land use
processes. For generation and testing of the geometric models, the problem of deforestation in Thailand is used.

1 INTRODUCTION

Image segmentation and classification is usually applied at the pixel level (using solely the radiometric properties of
pixels on an individual basis) by processing the data in order to arrive at a meaningful partitioning of the image. Pixel-
based segmentation and classification procedures start off with “raw-data” (a set of samples of reflectance values) and
end up with a segmented and labeled image. In this process the preliminary features or segments are located in the
Remote Sensing (RS) data and then examined for consistency (to find correspondence with real world objects). The
major problem with these pixel-based approaches is that there is insufficient information to completely isolate the
required objects because of the complexity of the objects and of the object radiation interaction in RS images.

Considerable research has been dedicated to improve the pixel-based segmentation and classification results. For
example, "classification accuracy improvement” (Hutchinson, 1982), “knowledge-based image analysis” (Civco, 1989;
Mulder and Schutte, 1992; Abkar and Sharifi, 1995), “object-based classification” (Janssen et al., 1990), “integration of
algorithms” (Schoenmakers, 1995; Gorte, 1998; Janssen, 1994), “model-based image analysis” (Mulder, 1993), "image
understanding” (Kohl and Mundy, 1994), “image fusion” (Förstner and Löcherbach, 1992; Pohl and van Genderen, 1998).

It is therefore clear that the spectral data alone is not adequate for rigorous information extraction from RS images.
Combining RS spectral data with other multisource (ancillary) data allows the use of more knowledge, which can
improve information extraction. Notwithstanding much effort spent already, an operational and (integrated) analysis
method is as yet required to combine (fuse) all this Earth observation data with geo-information systems (GISs) and
models to make it useful for a user community that is concerned with mapping, monitoring, managing and modeling the
Earth surface (Ehlers, 1991; Wang, 1991; Hahn and Baltsavias, 1998; Baatz, 1999).

In this paper we present a method that allows integration of available data and/or knowledge contained in GIS about objects
and processes into the analysis of remotely sensed data through hypothesis driven image analysis and effective
representation of knowledge about scene objects, sensor, and sensing processes. The analysis, as such, is guided by
expectations from the domain and the analysis starts with a model (at the object level) to partition the image. This model-
based classification of objects focuses on the integration of RS and GIS; this is done by shape hypothesis generation using a
GIS and evaluation of shape hypotheses and shape parameters in the evidences provided by RS images.
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2 DESCRIPTION OF THE METHOD

In this paper a framework is developed that allows a formal integration of information derived about objects and
processes in the analysis procedure. This is graphically represented in Fig. 1. In the developed framework, the data
and/or knowledge contained in a GIS about terrain objects and processes (e.g. growth, harvest, and development) can be
combined with the sensor model and the atmospheric model to optimize information extraction from RS data. The
proposed model is based on the probability theory, which enable combining information from different sources with the
purpose of classifying each pixel and making probabilistic assessments about the model “parameters” (Fig. 1). The
Bayesian probability theory is used to describe the uncertainties in the relationship between the observed RS data d, the
hypothetical class label ωk, and the model parameters p, modeled by the combined probability prob(d, ωk, p) of all
relevant factors in both the data domain and model domain. Here d is the collection of remotely sensed multi-spectral
data at a fixed time and ωk are the radiometric classes with k as the number of classes defined by the users (map
categories) and p is the parameter vector of the pattern model (i.e. the combined atmosphere, scene, and
sensor…efects). Therefore, for our purpose, we define Pattern = prob(d, ωk, p); see Abkar (1999).

We use the Bayes rule, to find maximum probability prob(ωk|d, p) over [(xi, yj)] and [ωk(xi, yj), p] from (RS) data given
the GIS under certain conditions of independency, i.e., separable into a radiometric model and a geometric model.

prob(d, ωk, p) = prob(ωk |d, p)prob(d, p) = prob(d|ωk, p)prob(ωk, p)

Thus, we have
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The application of (1) in classification and parameter estimation requires knowledge of the combined probabilities
prob(ωk, p). However, a form can be obtained through the application of the law of conditional probability

prob(ωk, p) = prob(ωk|p)prob(p)

since prob(p) cancels from the numerator and denominator of (1) after substitution, we have
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which is the basis for calculation of the maximum probability values for model parameters Abkar (1999).

The method developed for making use of the information/knowledge about objects and processes stored in GIS and
other information (sensor) in the analysis procedure is called Likelihood-Based Segmentation and Classification
(LBSC) of remotely sensed data (Abkar, 1999) and comprises three main processes (Fig. 1):
1. a radiometric likelihood generator, which generates likelihood vectors (probability for radiometry given

radiometric class) from multi-spectral RS data and a radiometric model for subsequent analysis by segmentation
and classification. Store the likelihood vectors in radiometric evidence maps.

As was noted that for the proper application of the refined Bayes formula (2), an estimate of prob(d|ωk, p) was
needed in order to find the probability (2), which are estimated from the training sample set. For a given p the set of
posteriori probabilities prob(ωk|d) can be arranged to form the K-dimensional vector E which we referred to as
radiometric likelihood vectors or radiometric evidence vectors E = [prob(ω1|d)    prob(ω2|d)      …    prob(ωK|d)]T.

2. a geometric hypothesis generator, which generates geometric hypotheses for image partitioning given initial
parameters and with geometric constraints. Current GIS is used as the source of object models to generate
geometric hypotheses (Fig. 1). Include the signal mixture model as defined by a sensors point-spread function.
Store each iteration over the geometric parameter space in a probability for class vector hypothesis map.

(1)

(2)
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Figure 1. Conceptual representation of
likelihood-based segmentation and
classification method. In this Figure,
processes are represented by rectangles and
the obtained information (data sets) are
represented by parallelogram.

3. a hypothesis evaluator, which evaluates each iteration of the hypothesis generation process calculating the degree
of agreement or disagreement between the evidence map and the hypothesis map. This results in the average
likelihood over all classes and all objects. When multiplied with a cost/benefit matrix a monetary utility function is
produced.
− If the utility is maximum then stop and update the GIS.
− If the utility is less than maximum, then change the model (parameters) and go to step 2 and generate new
geometric hypotheses maps.

A typical feature of the method is the separation of the complex combined probabilities of multi-spectral data, object
class, object geometry, sensors and sensing into a radiometric model and a geometric model. Bayesian inversion of
the radiometric model leads to radiometric evidence maps. The geometric hypotheses maps are generated from
parameterized object models. Geometric models are constrained by fixed objects and they include elements from the
sensor model, such as the point-spread function and the mapping of three-dimensional scenes into two dimensional
sample grids. The utility function consists, for each iteration of geometric hypotheses generation, of the matrix over
the crossing of all evidence vectors and all hypotheses vectors. This "confusion" matrix is multiplied (inner product)
with a benefit/cost matrix. The user of the combined RS&GIS system can optimize the results either in the
likelihood domain (unit cost/benefit matrix) or use several different cost/benefit scenarios. Residual error maps
show the distribution of residual errors. Study of the utility(parameter) function gives the overall quality in the
minimum value of utility.

3. EXPERIMENTATION, VERIFICATION AND EVALUATION OF THE FRAMEWORK

The LBSC is applied to the problem of identifying and estimating the expansion or depletion of forest in the study area
located in Thailand from 1977 to 1989 with the use of satellite remote sensing data, such as Landsat-TM images.

3.1 Study Area and Data

The district of Phrao in Chiang Mai province in the northern region of Thailand was selected as a relevant study area.
The general landscape is hilly and mountainous surrounding a small lowland area where settlements and agriculture are
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concentrated. Deforestation in the district is caused mainly by the expansion of agricultural activities and fuelwood
gathering of the lowland population (Ato, 1996).

The following RS and GIS data were used for the procedure of image analysis:
• The Phrao Landsat-TM obtained on February 1989 (Fig. 2-a);
• Land use/cover map of 1989 (Fig. 2-b), which serves two purposes:

− Training field selection for generation of the radiometric likelihood vectors.
− Evaluation of the classification results.

• Land use/cover map of 1977; derived from digitization on the aerial photograph of 1977 (Fig. 2-c),
• Soil map at a scale of 1:100,000 obtained from the Dept. of Land Development in Chiang Mai, Thailand (Fig. 2-d);

Figure 2. TM image & reference maps of Phrao District, Chiang Mai Province, Thailand
(a) TM image of Phrao District; natural color composite of Band 5, 4, and 3 (RGB); image size: 402 cols × 700 rows.
(b) Land use/cover map of 1989 including 15 generalized land cover classes (4 forest and 11 non-forest classes)
(c) Land use/cover map of 1977
(d) Soil map of Phrao District at a scale of 1:100,000

3.2 Radiometric Likelihood Generator

In the case of the maximum likelihood per-pixel algorithm the class to which the pixel is finally assigned is that with the
highest probability. Probabilities of class membership, on which the assignment is based, are usually disregarded so that
after classification no information on the probabilities is available. In order to overcome the limitations of the classical
techniques, such as maximum likelihood classification per-pixel, the "images" are mapped into the likelihood of class
labels per sample under the assumption of equal prior probabilities. It is assumed that the normal distribution function
will approximate the frequency distribution associated with each of the classes.

The likelihood vectors are stored in radiometric likelihood maps. The likelihood maps or evidence maps show the
probabilities that a sample belongs to each of the defined set of possible land cover classes, obtained by supervised
classification of the multi-band satellite images. Because of the interest in the boundary between forest and non-forest,
we have combined all the forest likelihood maps in one likelihood map for forest shown, in Fig. 3-a, and all non-forest
likelihood maps in one likelihood map for non-forest, which is shown in Fig. 3-b.

3.3 Geometric Hypothesis Generator

In this section, the available data and/or knowledge contained in the
GIS database about the shape of forest and non-forest objects and
processes will be used to predict the RS data about the extent of
deforestation (expansion of the non-forest area) in the study area by
shape hypotheses generation. By using a parameterized class
membership function, geometric knowledge is represented in
parameterized models resulting in a hypothesis map. The
hypothesis map depends on a geometrical object model with
morphological parameters.

Various models of hypothesis generation using Landsat-TM
images and GIS data and knowledge are tested. The assumption
that deforestation starts from existing agricultural lands (non-forest
classes) and spreads out towards forest areas guide the authors toward the use of morphological model for the expansion
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Figure 3. Forest and non-forest likelihood maps
a) likelihood map for forest class
b) likelihood map for non-forest class.
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of agricultural areas and the process of deforestation. Two main approaches for hypothesis generation about the shape
of forest/non-forest objects are:

First, in the absence of GIS data, a method of automatic shape hypothesis generation of RS data by means of local
maximum likelihood (LML) classification is used as a shape hypothesis generator for LBSC (Abkar 1999). Fig. 4-b
shows the forest and non-forest cover map obtained from the automatic shape hypothesis generator by means of LML
classification of the 1989 TM image, which contains small-patched and sparsely distributed deforested areas.

Second, based on the availability of data and/or knowledge from the GIS the initial hypothesis with an irregular shape
was generated. Rules for the development and change of the irregularly shaped forest/non-forest objects from simple
morphological parameters are formulated to generate shape hypotheses. After which the parameters are determined
based on the RS data. Given an initial state of non-forest class (or forest cover) the “isotropic expand” operation is used
to predict the next state of the non-forest class (see Fig. 5). The expand hypothesis is parameterized by using the
number of successive “pixel” expands applied to the reference map of 1977. Isotropic expansion is selected optionally
as 4 nearest neighbor expansion.

The assumption underlying the isotropic expand operation (people cut trees at the forest boundary at the same rate), was
not reasonable, as appeared in the (residual) error maps, with error patterns indicating an incomplete geometric
hypothesis. Adding constraints such as soil to the deforestation process significantly improved the isotropic expansion
of the non-forest area (see Fig. 6). The soil map is resampled to the coordinate system of the Landsat-TM sensor (Fig.
2-d) and then the soil suitability map for agriculture is derived. Next, this constraint map, are crossed with the
deforestation hypothesis map to generate constraint hypothesis maps. Therefore, the prior knowledge in this case,
consists of an initial state represented in a reference map of 1977 and the underlying assumption for the generation
process is the process of expansion constrained by, for example, soil and land form. This is called “soil-constrained
isotropic expand” but the generated constraint hypotheses maps are non-isotropic, i.e. the generated result is non-
isotropic (e.g. Fig. 6-b).

Using global geometric hypothesis such as unconstraint and soil constraint isotropic expends have the disadvantages
that the generated hypothesis boundaries are artificial and cannot account for local changes. Consequently, the method
of isotropic and soil-constrained isotropic expands were extended to “non-isotropic expand” by using local radiometric
constraints for application of expand in the framework of hypothesis generation and parameter estimation; this is in
contrast with the pixel-based approaches. The method is capable of dealing with regular, irregular and small-patched
and sparsely distributed deforested areas (Fig. 7).

3.4 Hypothesis Evaluation & Error Analysis

In this section the model results are evaluated by the minimum cost solution of hypotheses. The graph of the cost
function and the representation of the residual error maps are used for the evaluation of the model to measure the
outcomes from the geometric hypotheses. Then, the results are evaluated by the minimum cost solution of hypotheses.
Figures 4-b, 5-b, 6-b, and 7-b show the forest and non-forest cover map obtained from the various models of hypothesis
generation using Landsat-TM images and GIS data and knowledge. The graphs of the costs are also shown in Figures 4-
a, 5-a, 6-a, and 7-a. The deforestation maps can be determined by comparing the classification results with the land
use/cover map of 1997 (see Figures 4-c, 5-c, 6-c, and 7-c).

Figure 4. Forest and non-forest cover
map obtained from the automatic shape
hypothesis generator.
(a) the graph of the cost as a function of the
number of shrink operations (Local min) for
LML classification. The graph has a min-
cost of 0.306451 at Local-min-parameter = 8.
(b) the best result of the LML
classification
(c) deforestation map of Phrao between
1977 and 1989.
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Figure 5. Forest and non-forest cover
map obtained by the isotropic
expand hypothesis generation.
(a) the graph of the cost as a function of
the number of expand operations in case
the land use map of 1977 is used for
expansion. It has a min-cost of 0.360612
at expand-parameter=18.
(b) the best result of the iterative
isotropic expand operations for i = 18
(c) deforestation map of Phrao between
1977 and 1989 using isotropic expand
operations.

Figure 6. Forest and non-forest cover
map obtained by the soil-constrained
isotropic expand hypothesis
generation.
(a) the graph of the cost as a function of
the number of expand operations. The
graph has a min-cost of 0.331556 at soil-
constrained-expand-parameter = 44.
(b) the result of the non-isotropic
expand operations for i = 44.
(c) deforestation map of Phrao between
1977 and 1989 on the basis of the soil-
constrained isotropic expand result.

Figure 7. Forest and non-forest cover map obtained by the non-isotropic expand with the use of the
seed objects from the land use map of 1977.
(a) the graph of the cost as a function of the number of conditional expand operations (N cond. Dilation for
N= 0...900). The graph has a minimum cost of 0.295039 at N = 801.
(b) the best result of the non-isotropic expand
(c) deforestation map of Phrao between 1977 and 1989 on the basis of the non-isotropic expand result.

3.5 Overall Evaluation of Results

The resulting minimum costs of error solutions are compared with classical methods of image classification based on
per-pixel maximum likelihood (ML) classification followed by merging based on majority operators. The results of the
ML classification are shown in Fig. 8.

The available reference land use map of 1989 (ground truth) is also used to create the confusion matrices, in order to
assess the accuracy of the classified results. The reference data is used to check whether the result of the model comes
close to a man-made interpretation of the non-forest area, notwithstanding the errors made in man-made interpretations
of the ground truth map—the ground reference data (or ground truth) cannot be regarded as the absolute truth.

However, for comparison of the model results with the improved ML classification result, a 3×3 Majority filter is
applied (8 times) to the result of ML classification to smooth the classified result (Table 1).
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Figure 8. Forest and non-forest cover map obtained from the maximum likelihood per-pixel
classification of the Phrao Landsat-TM image of 1989.
(a) with 19 land cover classes
(b) with two merged land cover classes (forest and non-forest)
(c) after 8 applications of the majority filter. To treat isolated and mixed pixels, a post-merging
operator is applied to the ML result, iteratively.

Methods Overall accuracy
%

ML classification
Filtering results

69.39
80.21

LML classification 83.93

Isotropic expand 86.29

Non-isotropic expand
(likelihood-based constrained expend)

87.09

Soil-constrained isotropic expand 88.70

Table 1. Accuracy assessment of the various models for hypothesis generation

4. CONCLUSIONS

In this paper a Likelihood-Based Segmentation and Classification method (LBSC) for remotely sensed images, with
ultimate goal of describing objects in terms of their positions, sizes, shapes and geometric relations, based on a
minimum-cost or maximum-benefit principle. A key feature of the LBSC method is to break down the image analysis
into an evidence part and a hypothesis part; the evidence part comes from the RS data and the hypothesis part comes
from the analyst knowledge which might have been stored in GIS. RS and pattern classification provide evidence
(likelihood vectors) for subsequent analysis by segmentation and classification. Hypothesis evaluation provides a
cost/benefit optimization criterion for finding the best hypothesis to match the evidence using the cost matrix, which is
user specific. In this way the objectives and preferences of users/decision-makers are taken into account. The model
parameters are adjusted until there is a minimum cost (or maximum benefit) value for the hypotheses and parameters.
Therefore, instead of maximum a posteriori probability for each image sample (pixel), maximum a posteriori
probability per object hypothesis and object parameters is derived. In other words, minimum cost of confusion per
object over all objects and data samples is derived.

In summary, the experimental results indicated the following main achievements:
- A new method of image segmentation and classification to estimate the geometry and radiometry of objects using

remotely sensed data.
- A framework for integration of prior/external knowledge (GIS) in image analysis, which is based on the combined

probability of RS data and object models for the entire sample set of RS data by hypothesis generation and
parameter estimation with a Bayes type cost/benefit function, which allows:
− generation and prediction of the initial shape hypotheses of objects, and if relevant, incorporate constraints in

hypotheses generation process
− perform per-object segmentation and classification;
− perform calculation of per-object accuracy (maximum likelihood per-object hypothesis);
− derivation of the shape description of objects;
− Provide a formal framework for application of available knowledge/information of objects in classification

process.
− Extension of the geometric model to objects of non-rectangular shape, i.e. the algorithm can create irregularly shaped

segments; this makes the approach applicable to various cases.

a b c
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