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ABSTRACT

Airborne laser ranging systems provide a new source for determining surfaces. There is an increasing
need to compare surfaces and to combine and merge surface data obtained with different sensors. This
paper addresses the problem of determining the 3D transformation parameters between two sets of points
describing the same physical surface. However, the two sets are in different reference systems and the
points are not identical. We describe two mathematical models that are suitable to find optimal transfor-
mation parameters such that the differences between the two sets of surface descriptions becomeminimal.
The first approach minimizes the remaining differences along the z−axis of one of the coordinate sys-
tems while the second approach minimizes the distances between points of one surface description to
surface patches of the other surface, parallel to the corresponding surface normals. After deriving the
mathematical models, the two methods are tested with synthetic data. The performance of both meth-
ods are investigated with different topographic configurations The experiments confirm the theoretical
expectations that the transformation parameters can only be determined well if the surface has reason-
able surface slopes with surface normals pointing in all different directions. If these conditions are not
satisfied, the transformation problem becomes ill-posed and only a subset of the parameters can be deter-
mined. For surfaces with large slopes, the second method performs better because it minimizes distances
along surface normals.

1 INTRODUCTION

There is an increasing demand for the rapid generation of surface models. For example, orthophotos
require a known surface; city modeling poses new challenges to surface generation; surface change detec-
tion, such as monitoring ice sheets, requires a comparison of surfaces, captured at different times.

Airborne laser ranging systems are quickly emerging as a viable alternative to more traditional methods
of acquiring data suitable for describing surfaces. Laser ranging and automatic matching methods of
digital photogrammetry may be considered sampling processes, resulting in a set of points that consti-
tute a discrete description of the visible surface. The measured points on the surface (by laser ranging
or stereoscopy) are usually irregularly distributed. Moreover, characteristic surface properties, such as
breaklines and surface roughness, are not explicitly available.

Matching surfaces is a fundamental task that must be solved whenever we want to compare or merge data
sets describing surfaces. In the most general scenario, the two sets are obtained with different systems
(e.g. laser ranging and photogrammetry, or newly acquired data and existing surfaces) where the density,
distribution, and accuracy of points is different as well as their reference system—that is, the transfor-
mation parameters between the two coordinate system are not known. There are two distinctly different
problems involved in solving this general task. For one, a relationship of surface features between the
two surfaces must be established. We call this the correspondence problem in this paper. Once the corre-
spondence is established, a set of transformation parameters must be determined such that differences
between the two surface descriptions are minimized. We refer to this problem as transformation. Thus,
matching (or comparing) surfaces entails the correspondence and transformation problem.

In this paper we use points and surface patches as features for the correspondence and transformation
problem. This is motivated by the desire to work with entities that are as close to the observed quantities
as possible. Since both sets of surface descriptions consist of observed 3D points, a point to point corre-
spondence would be most desirable but it does not exist because the points are differently distributed. As
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a consequence, we determine surface patches in one surface, for example triangles through a TIN model.
Then, the correspondence problem is to identify the triangle in the first surface to which a point in the
second surface belongs. We do not elaborate further on the correspondence problem in this paper; the
interested reader is referred to Habib and Schenk (1999), for example.

Another approach to the surface matching problem would be to extract features in both surfaces that are
invariant to transformation, and establish a correspondence between features, followed by the transfor-
mation. This approach resembles image matching and has, in fact, been proposed by researchers. To
employ straight-forward image processing and image matching algorithms, the range data must be first
converted to an image, however. Considering the irregularly distributed points, the inevitable interpo-
lation may introduce unacceptable errors. Additional complications arise from the different reference
systems the two sets of surface points are recorded in.

Since we assume that the two surface descriptions are in different coordinate systems with unknown
transformation parameters, we cannot simply interpolate the irregularly distributed points to a grid and
compare the z−values at the grid posts. Originally, the idea of transforming the points of the second
surface and comparing the elevations at known points was suggested by Ebner and Strunz (1988). Here,
the application was to determine the absolute orientation of a model by using a known DEM, instead of
control points. The approach is based on minimizing the Z−differences between model points—subject
to an unknown transformation to object space—and points in object space found by DEM interpolation.
Subsequent studies demonstrated the applicability of the method (see, e.g. Ebner et al. (1991)).

In this paper we examine two different mathematical models to establish the transformation parameters
between the two representations of the same physical surface. The models differ in the target function.
The first approach minimizes differences in elevations between the two surfaces. The second method
minimizes distances along surface normals. This is a more general approach since the quantity to be
minimized is independent of the coordinate system. Thus, surfaces containing vertical sub-surfaces do
not cause a problem.

To examine the influence of the surface topography on the solution of the 3D transformation, we present
experimental results obtained with synthetic surfaces. These experiments confirm the theoretically moti-
vated expectation that the surface must consist of surface patches with surface normals in all directions.
Imagine the surface normals expressed by longitude and latitude; the values should be distributed over
the entire hemisphere.

In the interest of brevity we do not include in this paper results of practical applications obtained with
laser data sets, but refer to Postolov et al. (1999) and Schenk (1999a) for example.

2 MATHEMATICAL MODELS

In this section we briefly present two mathematical models that can be used to establish a correspondence
between two data sets describing the same surface. The derivations and the experiments performed in this
paper are based on the assumption that the two data sets are related by a 3-D similarity transformation.
It is very easy to employ other transformation types, however.

2.1 Problem Statement and Solution

Let S1 = {p1,p2, . . . ,pn} be a surface described by n discrete points p that are randomly distributed. Let
S2 = {q1,q2, . . . ,qm} be a second surface described by m randomly distributed points q. Suppose that
the two sets are, in fact, describing the same surface, however, they are in different reference systems.
In the example with the absolute orientation, set S2 may be the model system and set S1 is the object
space reference system. Another example is two laser data sets that have been obtained over the same
surface but with different systems. After proper transformation we have S1 = S2, except for differences
due to random errors of the observed points p and q. Yet another difference may arise from the discrete
representation of the surfaces, for example, n ≠m. Even in cases where n =m, the different distribution
may cause a differently interpolated surface. Suppose further that no points in the two sets are known to
be identical (same surface point).

The problem is now to establish a transformation between the two sets such that the two surfaces S1 and
S2 become as similar as possible in terms of closeness and shape. The problem is cast as an adjustment
problem where the second set of points q is transformed to the first set in a way that minimizes the
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differences between the two surfaces. Additionally, the orientation of surface normals between S1 and
S2 can also be minimized. Minimizing the distances assures the best positional fit while minimizing
differences in surface normals assures the best shape fit.

2.2 Target Function: Minimize ∆Z-Differences

The approach ofminimizing theZ−differences between two surfaces—subject to an unknown transformation—
was originally proposed by Ebner and Strunz (1988). Recently, Postolov et al. (1999) suggested to employ
the well-known decomposition of the 3-D transformation into a sequence of planimetry and elevation
transformations that are both linear. Moreover, the authors showed that the matching, that is the corre-
spondence of a point in one surface to the appropriate surface patch in the other surface, is not explicitly
required, but established simultaneously together with the transformation parameters.
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Figure 1: Point q is a point of surface S2 that is transformed to surface S1. In the vicinity of q,
S1 is represented by a planar surface patch. In (a), ∆z is used as a target function to
obtain transformation parameters. In (b), the shortest distance from q to the surface
is used for determining the transformation.

The basic idea of the mathematical model is illustrated in Fig. 1(a). Suppose point qi of the second surface
is transformed by a 3-D similarity transformation as follows

q′i = sRqi − t (1)

where R is a 3-D rotation matrix, t a translation vector, and s a scale factor. Assuming small rotation
angles dω,dϕ,dκ and small scale factor ds, we obtain for the components (see, e.g. Kraus (1993) for
detailed derivation)

x′q = ds · xq − dκ ·yq + dϕ · zq − xt (2)

y ′q = dκ · xq + ds ·yq − dω · zq −yt (3)

z′q = −dϕ · xq + dω ·yq + ds · zq − zt (4)

Suppose further that we have approximated the first surface in the neighborhood of qi by an analytical
function, for example a plane. Then, this surface patch is expressed by

z = a · x + b ·y + c (5)

Amnon Krupnik

520 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.



with a,b, c the coefficients of a plane fitting through a few points p of surface S1. Now, the offset of point
q′i to the surface patch along the z−axis is ∆z = z′q − zp (see also Fig. 1). We obtain zp by substituting x
and y in Eq. 5 with x′q and y ′q of Eqs. 2 and 3. Considering ∆z an observation, we obtain the following
design matrix coefficients for determining the seven transformation parameters

dω = y ′q + b · z′q
dϕ = −x′q − a · z′q
dκ = a ·y ′q − b · x′q
ds = z′q − a · x′q − b ·y ′q
xt = a
yt = b
zt = −1

with a,b, c the parameters of a plane (Eq. 5). We can interpret this procedure as finding transformation
parameters in such a fashion that the remaining differences between the two surfaces are minimized along
the z−axis.

2.3 Target Function: Minimize Distance along Surface Normal

The second approach to find optimal transformation parameters between two surfaces S1 and S2 is based
in minimizing the distance between a point of the second surface parallel to the normal of a surface patch
in S1. Fig. 1(b) illustrates the concept.

If the surface patch is expressed in Hessian normal form, using the three directional cosines and the
distance p from the the origin, then the shortest distance d from q′ to the surface patch is

d = q′ · h− p (6)

with h = [cosα, cosβ, cosγ]T . Substituting q′ with the right hand side of Eq. 1 yields the following
observation equation:

r = (sRq− t) · h− p − d (7)

We skip the details of linearizing this equation and refer the interested reader to Schenk (1999b), p. 410.
Using the same notation as in the previous model, the coefficients of the design matrix are

dω = y ′q cosγ − z′q cosβ
dϕ = z′q cosα− x′q cosγ
dκ = x′q cosβ−y ′q cosα
ds = (x′q −y ′q · dκ + z′q · dϕ) cosα+

(x′q · dκ +y ′q − z′q · dω) cosβ+
(−x′q · dϕ +y ′q · dω+ z′q) cosγ

xt = − cosα
yt = − cosβ
zt = − cosγ
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3 EXPERIMENTS WITH SYNTHETIC DATA

We performed several experiments with synthetic data in order to examine the geometric conditions that
are necessary to determine the seven transformation parameters between surface S1 and S2. The following
considerations elucidate the problem.

Suppose S1 is a horizontal plane. With one point of set q we can solve for zt . With two additional points,
the two rotation angles ω and ϕ are determined. Obviously, the farther apart the points, the better
the solution for the rotation angles. Regardless of how many more points we use, the remaining four
parameters cannot be determined because we can shift, rotate and scale the two planes with respect to
each other without changing their closeness. To solve for the two translation parameters xt,yt , two
planes parallel to the coordinate planes are needed. To determine the scale, a fourth plane is needed,
ideally parallel to one of the other planes. Note that points in vertical planes also solve for the κ-rotation.

In conclusion, the ideal configuration is a surface that consists of one horizontal plane and three vertical
planes. Moreover, one pair of vertical planes should be perpendicular while the other pair should be
parallel. The distances to be minimized between the two planes should be taken along surface normals.
It follows that minimizing elevation differences does not work satisfactorily.

Fig. 2 depicts the synthetic surfaces that we have used in the experiments. Surface S1 consists of the four
surface patches SP1, . . . , SP4. Surface S2 is represented by 12 points, q1, . . . ,q12. As indicated in Fig. 2, in
every surface patch of S1, three points are selected which are then transformed into the reference system
of S2. Additionally, noise is added to these points. The task is to determine the transformation parameters
by minimizing surface discrepancies between S1 and S2. In order to study the effect of the topography
on the solution of the transformation parameters, surface patches SP2, SP3, SP4 are tilted about different
angles.

X

Y
Z

SP1

SP2 SP3

SP4

Figure 2: Configuration of the synthetically generated test surfaces. Surface S1 consists of four
surface patches SP1, . . . , SP4, each represented by three points, resulting in 12 points
p1, . . . ,p12. Different points were used for surface S2. The points q1, . . . ,q12 were
obtained by transforming them with varying transformation parameters.

Table 1 contains some of the results obtained from the experiments. The first column contains angle α
about which surface patches SP2 to SP4 are rotated. The condition number (ratio of largest to smallest
eigenvalue of the normalized normal equation matrix) in column 2 and 5 is an indicator for the geometric
stability of the surface matching problem. Minimizing the surface differences along the z−axis is not an
adequate mathematical model in situations with large tilts. In fact, if surface slopes of more than 60o are
reached, the first model is unable to recover the parameters any longer. In contrast, the second model gets
stronger with increasing slope angles. The lowest condition number is reached for 90o slopes, confirming
our initial analysis presented in the beginning of this section.

The third and sixth column represent the average distance of the points q to the first surface. After the
adjustment, the distance along the surface normal of all transformed points was computed and averaged
(geometric mean). The distances in column 6 are just around the noise level. The numbers in column
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Table 1: Results obtained with synthetic surface patches depicted in Fig. 2. Surface
patches SP2, SP3 and SP4 were rotated about the principle coordinate axis
by the angle α.

math. model 1 math. model 2

tilt
angle α

condition
number distance

σz

σx,y
condition
number distance

σz

σx,y

0.5 155 0.07 3.0 · 10−5 119 0.046 2.6
1 152 0.08 1.3 · 10−4 116 0.042 2.4
5 141 0.09 3.5 · 10−3 114 0.041 2.1
10 141 0.09 1.4 · 10−2 113 0.035 2.1
20 148 0.09 6.1 · 10−2 108 0.032 2.0
30 165 0.08 0.14 101 0.033 1.9
50 278 0.11 0.31 80 0.035 1.5
70 divergence 61 0.037 0.8
90 singular 50 0.044 0.5

3 are slightly higher and increase with larger sloped surfaces. This is no surprise since the first model
begins to deteriate with slope angles larger than 50o.

The ratio σz/σx,y is computed from the cofactors of the variance-covariance matrix. The numbers ex-
press the relationship in precision between the z−component of the translation vector and its planimetric
component. It is interesting to note that the precision of the components is only balanced in situations
with large slope angles.

4 CONCLUDING REMARKS

Comparing surfaces is a frequently occurring task and a prerequisite for merging data sets. In a general
scenario the two sets of discrete points describe the same physical surface but they may differ in the
density, distribution, and accuracy of points. Moreover, the reference systems for the two sets may also
be different. We have presented a solution to the latter problem that is based on the assumption that there
are no identical points in the two sets for establishing the transformation parameters. Two mathematical
models were examined; the first model minimizes differences between the two surface descriptions along
the z−axis while the second approach minimizes the differences along surface normals.

The experiments conducted with synthetic data revealed that the transformation parameters can be re-
covered even in cases of moderately sloped surfaces. To recover all 7 parameters, the surface must have
slopes in all directions, however. With increasing slope angles, the second method performs better. Such
situations may occur in urban areas where man-made objects are added to the topographic surface.

We have performed the experiments with a simplified adjustment model. The distance of a point in the
second surface to the corresponding patch of the first surface is considered a pseudo observation. In
this approach, errors are only modeled in the direction of the distance. We have also compared this
approach with an adjustment of condition equations with parameters. This is a more realistic stochastic
model because it considers the surface points as random observations. Jaw, J. (1999) treats all points
in both surface sets as observations and includes also the effect of interpolating surface patches into the
stochastic model.
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