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ABSTRACT

The automatic analysis of spatial data sets presumes to have techniques for interpretation and structure recognition. Such
procedures are especially needed in GIS and digital cartography in order to automate the time-consuming data update
and to generate multi-scale representations of the data. In order to infer higher level information from a more detailed
data set, coherent, homogeneous structures in a data set have to be delineated. There are different approaches to tackle
this problem, e.g. model based interpretation, rule based aggregation or clustering procedures. In the paper, a parameter-
free graph-based clustering approach and an application in the domain of cartography, namely typification is presented.
Typification is a generalization operation needed in order to present a set of objects by a subset of representatives. In this
way, a collection of objects can be represented by fewer objects in a symbolic representation. An important prerequisite
for the legibility of detailed representation is that the structure is preserved. This implies that object clusters are preserved.

1 INTRODUCTION

The ever increasing amount of data and information available demands for an automation of its use. Users need adequate
search tools in order to quickly access and filter relevant information. Data Mining has evolved as a branch of computer
science, which tries to structure data and find inherent, possibly important, relations in the data. In general, it deals with
finding facts by inference; finding information in unstructured data, or in data which is not structured explicitly for the
required purpose. The basic tools of Data Mining are machine learning techniques, cluster analysis and interpretation
procedures.

In GIS and digital cartography, respectively, there is a growing demand for such techniques: huge spatial data sets are
being acquired and have to be kept up to date at ever increasing cycles; furthermore, information of different levels of
detail is required in order to compensate for the requirements of different applications. One important application is the
scale dependent data representation for quick visualization on a computer screen. In cartography, typically the data of
different scales are acquired, managed and updated separately — a highly time consuming and labor intensive task. In
order to accelerate update cycles and deliver actual information on-the-fly, tools and techniques for automation of initial
data capture and update are required.

An earlier approach (Anders and Sester, 1997) focused on the modeling of the spatial situation in a semantic network and
an explicit provision of a set of rules of how to aggregate objects. The prerequisite is the availability of an explicit and
complete model of the situation and of the aggregation rules. Such rules are often hard to find and usually also subjective.
The aim of this paper is to consider the problem as a general task of finding higher level structures in a seemingly arbitrary
collection of (labeled) objects. This can be transferred to the abstract problem of considering the objects and their behavior
as a stochastic point process. In this point-collection, meaningful structures have to be identified, namely homogeneous
clusters. Thus the approach relies on physiological observations of humans: humans use spatial neighborhood relations
in order to find gestalt objects and separate objects from background.

Homogeneity here is considered both concerning geometry, i.e. point density, and concerning semantics, i.e. thematic
’density’, namely similarity. Ideally, data mining approaches do not rely on any prior information, e.g. thresholds or
parameters, which tune the process. In cluster analysis, usually the number of clusters or an information about the
statistical distribution of the data is required. This approach focuses on procedures which are most generally applicable
(independent on the type of objects) and need no or only few parameters. Furthermore it is important that arbitrary
cluster forms can be identified, when no prior knowledge about the objects is assumed to be known. Such tasks can be
tackled by clustering processes — the important prerequisite is the modeling of the neighborhood, which can be achieved
by neighborhood graphs.
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2 RELATED WORK

In the context of data aggregation, there are many approaches in GIS and in digital cartography, namely in model or
database generalization. (Richardson, 1996) and (van Smaalen, 1996) present approaches to come from one detailed scale
to the next based on a set of rules. If such rules are known or models of the situation are available, good results can be
achieved (cf. (Sester et al., 1998)). However, the main problem being the definition of the rules and the control strategy to
infer new data from it (Ruas and Lagrange, 1995). Current concepts try to integrate learning techniques for the derivation
of the necessary knowledge (Plazanet et al., 1998), (Sester, 1999).

Clustering is a common descriptive task where one seeks to identify a finite set of categories or clusters to describe the
data (Titterington et al., 1985), (Jain and Dubes, 1988). In general one can divide the clustering algorithms in two groups:
The Non-hierarchical Schemes and the Hierarchical Schemes. Existing clustering algorithms, such as ISODATA (Ball
and Hall, 1965) k-means (MacQueen, 1967), (Jain and Dubes, 1988), PAM (Kaufman and Rousseeuw, 1990), CLARANS
(Ng and Han, 1994), DBSCAN (Ester et al., 1996), CURE (Guha et al., 1998), and ROCK (Guha et al., 1999) are
designed to find clusters that fit some static models. For example, k-means, PAM, and CLARANS assume that clusters
are hyper-ellipsoidal or hyper-spherical and are of similar sizes. The DBSCAN algorithm assumes that all points of a
cluster are density reachable (Ester et al., 1996) and points belonging to different clusters are not. All these algorithms
can breakdown if the choice of parameters in the static model is incorrect with regarding to the data set being clustered,
or the model did not capture the characteristics of the clusters (e.g. shapes, sizes, densities). More information about
clustering methods can be found in (Karypis et al., 1999).

3 GRAPH-BASED CLUSTERING

The most powerful methods of clustering in difficult problems, which give results having the best agreement with human
performance, are the graph-based methods (Jaromczyk and Toussaint, 1992). The idea is extremely simple: Compute a
neighborhood graph (such as the minimal spanning tree) of the original points, then delete any edge in the graph that is
much longer (according to some criterion) than its neighbors. The result is a forest and each tree in the forest represents a
cluster.

In general, hierarchical cluster algorithms work implicitly or explicitly on a similarity matrix such that every element of
the matrix represents the similarity between two elements. In each step of the algorithm the similarity matrix is updated to
reflect the revised similarities. Basically, all these algorithms can be distinguished based on their definition of similarity
and how they update the similarity matrix. In spatial clustering algorithms one can discriminate between spatial similarity
and semantic similarity which means the similarity of non-spatial attributes.

Spatial Similarity implies the definition of a neighborhood concept which can be defined on geometric attributes, such as
coordinate, distance, density, and shape. The computation of a spatial similarity matrix can be seen as the construction
of a weighted graph, so called neighborhood graph, where each element is represented by a node and each neighborhood
relationship (similarity) is an edge. There are efficient algorithms to compute neighborhood graphs (Jaromczyk and
Toussaint, 1992) which can be used to compute a spatial similarity matrix.

3.1 Neighborhood Graphs

A general introduction to the subject of Neighborhood graphs is given in (Jaromczyk and Toussaint, 1992). Neighborhood
graphs also called proximity graphs (Toussaint, 1991), are used as tools in disciplines where shape and structure of
point sets are of primary interest. These include for example visual perception, computer vision and pattern recognition,
cartography and geography, and biology.

Neighborhood graphs capture proximity between points by connecting nearby points with a graph edge. The many
possible notions of nearby (in several metrics) lead to a variety of related graphs. It is easiest to view the graphs as
connecting points only when certain regions of space are empty. In the following definitions of proximity graphs we will
use these notations:

L, : The distance metric L, defined as 0, (z,y) = (Z?zl lz; — ys|P)H/P.

dp(z,y) - The distance between two points  and y using the metric L.

Bally(x,r) : The open Bally(z,r) = {y|dp(x,y) < r}.

Luneg, (z,y) : Luneg,(z,y) = Ball,(x(1 — g) + yg, gép(ac,y)) N Ballp(mg +y(1— g), gép(m,y)).

V : A setof n points in R
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Edge(z,y) : The vertices x and y have a common edge.

Given a metric L, some well known proximity graphs are:

e The delaunay triangulation (DT, (V')).

e The nearest neighbor graph (Jarvis and Patrick, 1973),
NNG,(V) ={Edge(z,y)|z,y € V A Bally(z,0p(z,y)) NV = 0}.

e The minimum spanning tree (M ST, (V)).

e The relative neighborhood graph (figure 1a)) (Toussaint, 1980),
RNG,(V) = {Edge(x,y)|z,y € V A Lunes, (x,y) NV = 0}.

e The gabriel graph (Gabriel and Sokal, 1969),
GGy (V) = {Edge(z,y)|z,y € V A Luney, (z,y) NV = 0}.

e The [3-skeleton (Kirkpatrick and Radke, 1985),
Ggs,(V) = {Edge(z,y)|z,y € V A Luneg (z,y) NV = 0}.

e The sphere of influence graph (Toussaint, 1988),
SIG(V) = {Edge(x,y)|z,y € V A Bally(z,0p(x, NN (x))) N Ballp(y, 6p(y, NN(y))) NV = 0}

e The a-graphs (Edelsbrunner et al., 1983).

The important relationship between some proximity graphs is that they build a part of hierarchy. Given a point set V and
ametric Ly, then for any 3 € [1, 2] the following hierarchy is valid:

NNG,(V) C MST,(V) C RNG,(V) C G, CGGH(V) C DT,(V).

In figure 1b) the hierarchical relationship between the Nearest Neighbor Graph, the Relative Neighborhood Graph, the
Gabriel Graph, and the Delaunay Triangulation of a point set is shown.

a) b)
Figure 1: a) RNG of a point set. b) Hierarchical relationship between proximity graphs (top down: NNG, RNG, GG, DT)

The computation of such a hierarchy needs O(nlogn) time, because the computation of the Delaunay Triangulation needs
O(nlogn) time and any subgraph can be computed from its supergraph in O(n) time. For example, an algorithm for the
RNG in the Euclidean metric using the Delaunay Triangulation was developed by (Supowit, 1983).
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4 HIERARCHICAL GRAPHBASED CLUSTERING

In our approach we use the hierarchical relationship between proximity graphs to represent a near to a far neighborhood
model. Our algorithm can be described as follows:

The first basic step is the computation of the Delaunay Triangulation (DT) from a given set of points. In the next step we
compute first the Gabriel Graph (GG) from the DT, second the Relative Neighborhood Graph (RNG) from the GG, and
third the Nearest Neighbor Graph (NNG) from the RNG (figure 1a)). Then we activate the edges of the NNG to start with
the nearest neighbor model. Then all given points (graph nodes) are initialized as a single cluster. Every cluster contains a
set of inner edges and a set of outer edges. The inner edges connect nodes which belongs to the same cluster and the outer
edges connect nodes which belongs to different clusters. Every cluster is characterized by the median of the inner edge
sizes (cluster density) and the cluster variance. The cluster variance is the median deviation of all inner and outer edge
sizes from the cluster density. Using the inner and outer edges to compute the variance introduce an uncertainty factor to
our model. At the beginning every initial cluster has no inner edges and therefore a density of zero, but the variance will
be none zero, because every node in the NNG belongs at least to one edge. All initial clusters are put into a priority queue,
ordered by their density and variance values. The first cluster in the priority queue is selected (cluster with the highest
density) and merged with all of his valid neighbor clusters. Valid neighbor clusters are clusters which are connected by
an outer edge and meet the following heuristic constraints:

e Density compatibility of two clusters X, Y:
Min(X) < Median(Y) < Mazx(X) A Min(Y) < Median(X) < Maz(Y).

e Distance compatibility of two clusters X, Y:
Maz(XUY) < Mazx(X)AMazx(XUY) < Maz(Y)AMin(X) < Min(XUY)AMin(Y) < Min(X UY).

e Variance compatibility of two clusters X, Y:
Variance(X UY) < Variance(X) V Variance(X UY) < Variance(Y).

After the merging all valid neighbor clusters are removed from the priority queue. Then repeat the selecting and merging
step until no more clusters with valid neighbors can be found. The result are the clusters based on the NNG. In the next
step the RNG edges are activated an the same procedure as for the NNG is repeated. Then the GG edges are activated and
finaly the edges of the DT are processed.

One basic aim of our approach was to detected building clusters for map generalization (see next chapter). Figure 2 a)
and b) shows the clustering result of two 2D point sets (centroids) derived from 2D building groundplans.

Figure 2:

We applied our clustering method also to a measured 3D object point cloud. Figure 3a) shows the result of a special
segmentation method using a surface model, the surface curvature, and requires some user-defined parameters. Figure 3b)
shows the result of our clustering process without any user-defined parameters using only the given 3D points.
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Figure 3: Segmentation of a 3D point cloud. a) Reference segmentation. b) Graphbased result.

Our approach can also be applied to images. Every image pixel is transformed to a 3D point represented by row, column,
and gray value. Figure 4 shows the result of an example image.

Figure 4: Image classification. Left: Gray value image. Right: Clustering result.

S CLUSTER DETECTION AS A PREREQUISITE FOR TYPIFICATION

Generalization is needed in order to limit the amount of information on a map by enhancing the important information and
dropping the unimportant one. Triggers for generalization are on the one hand limited space to present all the information;
on the other hand but also the fact that different scales of an object are needed in order to reveal its internal structure.

Typification is a generalization operation that replaces a large number of similar objects by a small number — while
ensuring that the typical spatial structure of the objects is preserved. Consider e.g. a set of lakes in Finland: when looking
at this spatial situation at a different scale or resolution, the typical distribution of the lakes should still be preserved. The
same holds for buildings in a city: different parts of the city exhibit different cluster densities. These differences have to be
preserved, if not enhanced, by typification. There are some approaches dealing with different kinds of objects: (Mller and
Wang, 1992) use mathematical morphology to typify natural areal objects. Their principle is to enhance big objects and
reduce small ones — unless they are important. Typification for linear structures is proposed by (Regnauld, 1996). Based
on a Minimum Spanning Tree clustering groups are detected; then the relevant objects within these groups are replaced
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by typical exemplars. This approach for building typification is motivated by the phenomenological property of buildings
being aligned along streets — thus a one-dimensional approach is feasible.

Our approach is similar, however tackles the two dimensionsional problem. The above described clustering is applied
to buildings, thus delineating buildings clusters, and their respective densities (or mean distances, respectively). After
clustering, the number of objects within the clusters has to be reduced. The reduction factor can e.g. be derived using the
black-and-white—ratio, which is to be preserved before and after generalization, or Tpfer’s radical law. The problem now
is to decide which object has to be removed. This question is decisive, since the removal of one object results in gaps.
Therefore a solution must be sought to preserve the initial cluster density (the mean distances between the objects) after
the elimination of the objects.

This is achieved using the following strategy: after the elimination of the objects, all the objects inside the cluster are
rearranged in order to reflect the original density. This strategy is implemented in a displacement framework PUSH,
described in these proceedings (Sester, 2000). This program allows for displacement of geometric primitives in order to
ensure minimal distances between the objects. In order to displace cluster elements, the distances between the objects
within a cluster are set to be the original distances, which are computed in the clustering process. Thus intra-cluster
distances are set to the respective a priori distances, whereas inter-cluster distances are set to the required distances in the
displacement process. This approach is visualized in the following example. The situation in a building block is too dense
to be displayed in the reduced scale 5, a). Thus it has to be typified — preserving the original structure. The application of
the clustering yields the result given in figure 5, b), where each color indicates objects of the same cluster. Obviously 5
clusters have been detected.

Then, one of the objects in the most crowded cluster is eliminated (5, c). Applying the above described displacement
yields the result, that the gap is closed and the objects are displaced to their original spacing 5,d).
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Figure 5: Elimination of one object in the bottom right cluster (left); result of the displacement of all the objects in the
scene(middle) (right).

The important property of the approach is that the selection of the object to be eliminated is arbitrary — as the original
spacing is enforced, the objects will be placed in the correct manner. This is shown in figure 6. The remaining three
possibilities for removing an object from the cluster have been calculated: although the position of the cluster slightly
varies, still the cluster shape is preserved.

The examples showed how linear clusters have been detected and typified. The approach, however is general and can be
applied to non-linear situations as well. If the objects inside the clusters are placed randomly, then the above sketched
procedure is very useful. Problem occur, however, if there is a regular structure (e.g. a regular grid) within the clusters —
eliminating an object causes the remaining objects move into the gaps, and thus destroying the regular structure.

6 CONCLUSION

In this work we have described a general approach to detect clusters in point sets without using any user defined param-
eters. We have shown that this cluster method can be used as a preprocessing step for the typification in cartographic
generalization. Intended to find clusters in settlement data this approach can also be used for the segmentation of image
and 3D measurement data.
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Figure 6: a) Elimination of upper object and result of displacement. b) Elimination of middle object. c¢) Elimination of
lower object.

Our approach use only metrical scales for the computations, but further work has to be done to include so called nominal
scales in the clustering process to work also on non numerical values. Further work has also to be done on the computation
of the characteristics of the found clusters. These characteristics are geometric features, like size, shape, average density,
etc. In addition to these unary features, also binary features — relations — between the clusters can be used. These
characteristics can then help either to identify clusters with similar characteristics, or even to identify objects. This can be
achieved by well known pattern recognition or interpretation procedures, e.g. model based interpretation.

Especially the computation of the shape of a point set is a non-trivial problem. In contrast to other geometric notions,
such as diameter, volume, or convex hull the geometric notion of shape has no associated formal meaning (Edelsbrunner
and Miicke, 1994). A fair amount of related work has been done for planar point sets, and some for three dimensional
point sets. One of the first who considered the problem of computing the shape of a point set as a generalization of the
convex hull was (Jarvis, 1977). A suitable method to describe the shape of point sets are the so called a-shapes. A general
and mathematically well defined concept of shapei ntroduced by (Edelsbrunner et al., 1983), (Edelsbrunner and Miicke,
1994).
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