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ABSTRACT

Accurate digital elevation model(DEM) can be producted by using interferometric SAR data. We have developed a new
software on PC’s that can automatically generate DEM from single look complex SAR pairs. The least-squares image
matching method based on SAR multi-look intensity images has been used to register complex image pair. The typical
accuracy of 0.02-0.04 pixel size can be obtained on multi-look SAR images. We also present a new set of equations for
calculating three dimensional coordinates at each pixel from unwrapped phases. The orbital position, attitude and
baseline as well as phase constant have been involved in the equations. Using at least six ground control points, it is
possible to refine interferometric baseline, and estimate the phase constant, the orbit and attitude parameters
simultaneously. Test results are provided for ERS-1/2 interferometric SAR scene pair acquired over Etna area in Italy.

1 INTRODUCTION

Synthetic aperture radar(SAR) interferometry is a powerful technique for the generation of accurate digital elevation
model(DEM)(Zebker and Goldstein,1986), the detection of surface deformation(Massonnet et al.,1993),and calculation
of the ice sheet motion(Goldstein et al.,1993). There are two ways to implement across-track interferometry. In the first
approach, the two physical antennas displaced in across-track are mounted on a single platform.One antenna is used for
transmitting and receiving radar signals,and the other for receiving only. These systems usually are used in airborne
system and Shuttle Radar Topography Mission( SRTM). Second, interferometry was realized by utilizing a single
antenna on the platform in a nearly exact-repeating orbit. Repeat-track interferometry has significant advantage in low
cost and simplity because it uses a single antenna. For repeat-track interferometry two SAR images were acquired at
different time, the imaged surface may change during the observation to introduce correlation decrease. This is usually
called temporal decorrelation. The low correlations between the signals result in large interferometric phase error and
height estimate error. With the ERS-2 satellite was launched, ERS-1/2 repeat-tract time interval is 24-houses, the
performance of topographic mapping for ERS-1/2 interferometric SAR will be improved. In certain conditions, DEM
generated by ERS-1/2 SAR can fulfil the heigh accuracy of 1:50000 map.

2 INTERFEROMETRIC SAR DATA PROCESSING
2.1 Image Registration and Interferogram Production

In order to form the interferogram, the single look complex(SLC) image pair has to be co-registered. We present a new
registration method. This approach is a multi-lever matching technique based on the SAR intensity images. First, we
select one of image pair as a geometric reference, and will be called the master image. The other will be called the slave
image. Two pixels located at the same range in the master image do not share the same range in the slave image if the
elevation of the points they represent on the ground differ. We define a regular grid of anchor points in the master image.
We find correspondent point in slave intensity SAR image using the standard local correlation technique. The offsets of
matching point are obtained. This made matching point to a pixel accuracy. Then we started second-lever matching---
least squares image matching. The least squares matching (LSM) is based on the principle which minimizes the sum of
the squares for gray value difference.

The linear observation equation for LSM is expressed as:
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Ag(zl-)+v(zl-)=2(ai)O da,, +Z(ai)O ~dhy, (m=1,6:k=0,1) (1
da,, oh,

where Ag(z,) is gray difference for correspondent pixels in the two matching windows; V(Z;) is observation error;
S is slave intensity image transformed by geometric and radiant transformation (transformation parameters are a,,
and h, respectively) .da, and dh, are corrections for unknown transformation parameters.

Each correspondent pixel pair in matching windows may give an observation equation. The corrections da,, and dh,
for unknown transformation parameters can be solved using the least squares solution. The transformation parameters
were calculated by expressions:

aV =al™ +da,, h =™ +dn,

The weights of the observations are set to be 1.The solution was performed by iteration.

Due to speckle noise effect for SAR image, it is adverse to use least squares in single look complex SAR pair. So,we
first generate multi-look SAR intensity images, and perform matching for multi-look image pair. The offsets for this
image pair are derived, and results are then rescled to account for the integer factor of reduction between multi-look
images and single look complex images. The registration and resampling are performed in SLC images.

The registration of any pixel can be performed after the offsets of grid points were formed. For any point in master
image, pixel offsets of correspondent point in slave image were calculated by using bilinear interpolation as follows.

2

X' = ay+taxt+a,y+asxy
y'=by+bx+b,y+bsxy

where x' and )" are offsets for slave image. The X and y are coordinates for this point. The a,---b; are
transformation parameters.

The next processing step is the resampling for slave complex image. We use the bilinear interpolation to perform this
task. The resampled value of any point P is:

P=a+bi=(1-Ax)1-Ay)P; +(1-Ax)AyP,, + Ax(1 - Ay) Py, + AxAyP,, 3)
M Y2 X
Xy Py P,
AX
Ay P
X Py, Py,
X

Figure 1 Bilinear interpolation

where P, P,, P, P,, are complex pixel values.

It is possible to form an interferogram after all pixels were registered. We assume that A7, is the complex pixel value
in the master image, S, is equivalent in the co-registered complex slave image, and 1, is complex pixel in the
interferogram, we have:

*
T'l] :MljSlj i:l’...’n’ j:la...’m

where Sj is the complex conjugate of pixel S, .
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2.2 Coherence Calculation

For the co-registered image pair, the coherence was computed as follows:

1 . 1 ; 1 . 4)
p = M-S, MM Sy Sy (
NN, ,-:LZN‘l v NN, ,-:1,21\/‘1 ! 7NN, ,-:LZN‘[ v
j=L.N2 j=L.N2 j=.N2

where M is the complex conjugate of pixel M, ; N; N, are number of pixels in azimuth and in slant range,
respectively.

2.3 Flat Earth Phase Removal

In order to reduce the phase noise and simplify the phase unwrapping procedure, flat earth phase removal was carried
out. A tangent plane to the scene center or spherical surface can be used as the reference surface for flat earth phase
removal. To further reduce interferometric phase noise in mountainous areas, a coarse digital elevation model could
replace the plane or spherical surface as the reference. We used the tangent plane of the scene center as flat earth phase
removal reference. The planar phase to be subtracted is calculated as follows:

4 1 H
0, = %Bcosﬂ B o=a+sin I i=len, j=lem (5)

where A. is wavelength, B is baseline distance, 3 is angle between the baseline and line of look, « is the
baseline angle with respect to horizontal, H is orbital altitude, r; is the range to a point on the ground. B and «
can be calculated from the satellite orbital data.(see section 3.1)

Removal of the phase term v, from each pixel produces the flatted interferogram, ready for input to the phase
unwrapped step.

2.4 Adaptive Filter and Phase Unwrapping

In order to reduce the phase noise and to facilitate the phase unwrapping, the raw interferogram was filtered using a
multi-look technique, typically 2 in range and 10 in azimuth. The filtered flattened interferogram was then unwrapped
using least squares phase unwrapping method.

The interferometric phases are measured mode 27T , that is,the integral number of phase cycles on each measurement
is lost. To reconstruct digital elevation model, the integral number of phase cycles lost have to be recovered. This
procedure is known as phase unwrapping. When there are no noise or aliasing effect in the measurement phases, phase
unwrapping is very simple and straightforward. A simple integration procedure,in which the partial derivatives of the
phase data are extracted and then integrated along vertical or horizontal lines suffices to produce the unwrapped phase.
In practice, however, there are noise and aliasing effects that cause inconsistencies in the phase. The simple integration
procedure can not be applied in this case, because it propagates and accumulates these phase inconsistencies,giving rise
to very large error in the result.

Two main phase unwrapping methods in common use today are residue-cut phase unwrapping (Goldstein et al.,1988)
and least squares methods(Ghiglia and Romero,1994).We selected least squares procedure to perform phase unwrapping.
Least squares phase unwrapping is based on the principle that determines a smooth unwrapped phase function that
minimizes the difference between the gradients calculated from the wrapped phase and the presumed smooth
unwrapped phase. Assuming ¢, denotes the wrapped phase of any pixel in image, ¢,and is correspondent unwrapped
phase. Phase observation equation is expressed as: '

V= Ap-L (6)
where V is the residual vector, 4 is coefficient matrix, ¢ is unknown unwrapped phase, L is observiation related to ¢, .

The least squares solution is obtained as:
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-1
6 =(aral'a’L ™
When certain phase values are known to be corrupted due to noise, aliasing or other degradation, the weighted least

squares method should be used to reduce the poor effect for unwrapping. Assuming equation (6) has a weight matrix P,
The least squares solution is :

o =(a7pPa) aTPL ®)

We used conjugate gradient method to solve equation (8) iteratively. The accuracy of the solution depend on the choice
of weight to apply to each point of the measured phase. The coherence of interferogram provides the quality
information of measured phase, we used coherence map to construct the weight map of the observation phases.

3 CALCULATION OF THREE DIMENSIONAL COORDINATES FOR TARGET POINT
3.1 Estimating the Baseline Vector Using Orbital Data

In order to simplify baseline estimation, we establish an assistant coordinate system, whose origin is in the master orbit

Figure 2 Geometry of interferometric SAR

position relative to the mid-scene, z-axis is in ray linking this point and center of earth, x-axis is in the orbital pane and
perpendiculur to the z-axis and towards the direction of satellite motion, and y-axis completes a right hand coordinate
system. The interferometric baseline is defined as the distance vector between two orbit positions corresponding to the
time when the satellite imaged the same target on the earth’s surface. The three coordinate components of slave orbit
position were expressed as time dependent polynomial. The polynomial coefficients are estimated by the orbital node
data, and the slave orbital position of any time can be calculated by this polynomial. The baseline vector can be
calculated when the x component of slave orbital position is zero. The expressions are:

B = y2 + 27
-1 Z (9)
o =1tg =
y
3.2 Refining The Baseline,Orbital and Attitude Parameters
Topographic mapping equation for interferometric SAR can be written as (Shi, 1996):
;:target = ;radar + ﬁlo.r r (10)
where 7 is the slant range, 71, is an unit vector in the line of sight direction. Rewritten as matrix form:
X a, a, as 0 X
Y |=Ab by, by | rsin@ |+]|Ys 11)
VA ¢, ¢, ¢y ||—rcosf Zg
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A
0 =~ _arccos —C(p +o
2 4nB

where X ,Y,Z are ground coordinates of any point; a,,a,,"**,c; are elements of the rotation matrix expressed as
function of three attitude angles @, ,k; A is scale factor.6 is false look angle;. X,,Y,Z, are satellite position;
¢ is interferometric absolute phase.

a; =Ccos@CcoskK —sin@sin @sin K
b,
¢, =sin@cosk +cos@sin wsin k

coswsin K

a, =—cos@sink —sin @ sin @ cos K
b, =coswcosk

¢, =—sin@sin kK +cos @ sin ®cos K
a; =—sin@cos®

by =—sinw

€3 =COS(PCOS®

The orbital position, attitude parameters and baseline distance can be characterized by linear or low order polynomial
function. Here are expressed as linear functions.

X = Xgo + X(t—10)
B =B, + B(t—1t0)

Linearizing equation(11), we obtain the observation equation:

h=4X-L B (12)
where,
e =[VX Vy Vz]T
dyp 4 ot iy
Ay =lay ayn - ayy
a3 dzp " 43y
X = [AXSOAYSOAzsoAq)koOAKOAAOAXSAYSAZSMA@A;& MABOABA%]T
L :[LX Ly Lz]T
where AX ,AY,,,AZ and A@, Aw, Ak, denote corrections for orbital position and attitude at time

t0,respectively; axy,av,aZz and A, Aw, AK denote corrections for correspondent rate, respectively; ALy and AB,
denote corrections of the scale and baseline length at time t0, respectively; Al and AB denote corrections for
correspondent rate, respectively; A¢. is correction for phase constant; P, indicates the weight matrix.

ap, =ai=1,a12 = oX =0,a,; = X =0,ay, =ai=—/1(c2rsin0—c3rcose)
9X 5 Yy 0Z 99,
as =§TX=—/l(bzrsine—b3rc050)sinqo
0
a6 = ;TX =—A(b,rsinO — byrcosf)cos @ cos® — A(c,rsinB — c;r cos0)sin @
0

X .
a7 = —— = a,rsin@ —asrcosO

My
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L,=Y-(¥ +Y, (t—10)) — A(b,r sin @ —bsr cos6)
L, =Z—(Z+Z,(t—10))—A(c,rsinf —c;rcosh)

We can also give the following observation equation when the accurate enough satellite orbital data are known:
V, = A, X-L, P, (13)

where
v, = [VXS VYS VZS ]T

1000O0OO0OO0OTLIO0O0--0
4 =01 0 0 0 0 001 0--0
001 00O0O0O0OGO0OT:-
L, = [LXS LYS LZS ]T
The least squares solution of unknown parameters is:
T T R T
X = (Al P A+ 4, P2A2) (A1 P L +4, P2L2) (14)

3.3 DEM Generation
Using the equation (11),we can calculate the three dimensional coordinates of each point in SAR image. Because of the

array of unevenly spaced grid,the interpolation is needed. To obtain an evenly spaced grid, we use the bilinear
interpolation method for simplicity without losing too much information.

4 TEST AREA AND RESULTS

Test area is Etna area in Italy. The interferometric SAR data were acquired by ERS-1/2 satellites. The area size is 30.7
km in azimuth and 40.9km in ground. The parameters of data are shown in table 1.

The processing results are shows in Fig.3—Fig.6. Fig.3 shows the intensity image of orbit 1,and has been processed for

multi-look, 2 in range and 10 in azimuth(or 20 looks). The interferometric fringe is shown in Fig.4. Fig.5 shows the
coherence map between two complex images, and average coherence is 0.56. Fig.6 is DEM image.

Table 1 Parameters of ERS-1/2 interferometric data in Etna ,Italy

Parameters Orbit 1 Orbit 2
Satellite ERS-1 ERS-2
Orbit number 21660 1987
Imaging time 1995.9.5 1995.9.6
Radar wavelength(m) 0.056 0.056
Azimuth pixel spacing(m) 39 39
Range pixel spacing(m) 7.9 79
Look number 1 1
Azimuth size(km) 30.720 30.720
Slant range size(km) 16.179 16.179
Ground range size(km) 40.96 40.96

In orde to translate the unwrapped phases into the elevations,we have to estimate the baseline,orbit and attitude
parameters. The baseline vector is roughly estimated by using ERS-1/2 orbital data. We identified twelve ground control
points from 1:50000 map and SAR image. Seven points are used to refine baseline and solve the orbit as well as attitude
parameters,and other five points are used to check the accuracy.The rms of height check points is 11.3m. The three-
dimensional coordinates for each point are calculated by using equation(11) and unwrapped phase.

5 CONCLUSIONS

We have developed a new software on PC’s for interferometric SAR data processing. The least-squares matching is
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Fig.3 Intensity image relative to Mt.Etna
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Fig.5 Coherence image Fig. 6 INSAR derived DEM
used to register the complex SAR pair. The accuracy of 0.03 pixel size is achieved. A new set of equations for
calculating the three-dimensional coordinates of target point have also been presented. This equation more accurately
describes the dynamitic imaging geometry of interferometric SAR. Using at least six ground control points. it is
possible to refine interferomeric baseline, and estimate phase constant, the orbit and attitude parameters simultaneously.
The processing results for ERS-1/2 interferometric SAR over the Etna in Italy verify our method. The rms for five
ground height check points is 11.3m. We plan to compare INSAR DEM with reference DEM.
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