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ABSTRACT 
 
Forest managers and policy makers require timely information about the current state of forest resources over large 
areas.  One important factor is forest growth and compositional change, which currently can only be approximately 
modeled in the time between field surveys.  This study investigates whether a sequence of satellite images from 
Landsat-5 TM can be used to monitor forest growth, and specifically compare growth rates between different forested 
plots from the Swedish National Forest Inventory.  Seven Landsat Thematic Mapper scenes were acquired over a 12-
year period during the vegetation season.  An image-based relative calibration procedure was applied to normalize the 
images for differences in atmospheric clarity and other specific conditions of image acquisition, and pixel values were 
extracted at sample plot locations for each scene.  Plots were then selected from the inventory data for comparison of 
their spectral profiles over the 12-year period.  Longitudinal regression models were fit to the datasets to test the 
significance of site index as an explanatory variable.  It was found that once the effect of age was removed, the recorded 
site index could not explain the residual variance in individual plot trajectories.  This is probably due to problems with 
precise positioning of the plots in the image, but also the fact that the site index is a rather coarse predictor of actual 
growth.

1 INTRODUCTION 

1.1 Background 

Effective forest management requires detailed information about the current state of the resource as well as tables or 
models for forecasting future conditions.  With this information, forest managers are able to select appropriate 
management treatments to optimize economic output as well as achieve certain preservation and diversity goals.  In 
Sweden, and typical in other countries, new management inventories start with delineation of homogeneous stands in 
aerial photographs followed by measurement of forest parameters at a number of sample plots within each stand.  
Inventory parameters, stored in a database, are updated in subsequent years following the inventory using growth 
models, from recorded harvesting activities, and from periodic re-measurement.  After some time, it is typical for 
uncertainty to accumulate in the inventory data, either from errors in the initial estimates, from departures from 
predicted behavior in the models, from unexpected damages, and from inaccurate updating of management treatments.  
After some years of continuous update, it is typical for errors to be so large, that the entire inventory must be re-done 
from scratch.  There is considerable economic benefit if the information in the inventories can be improved, or if the 
useful life can be extended by even a few years. 
 
On a larger scale, the National Forest Inventory (NFI) in Sweden collects information about the forest land for the entire 
country using a network of permanent and temporary sample plots.  There are roughly 18000 sample plots distributed 
throughout the country with a higher sampling density in the south.  Temporary plots are allocated and measured only 
once, while permanent plots are revisited on roughly a 5-year cycle. Information from the NFI is used to identify long-
term trends in wood-supply, forest composition, and health, and is an important input for environmental monitoring and 
setting national forest policy.  While the purely plot-based design does provide objective estimates of forest state, it is 
not particularly efficient for sampling certain attributes, such as annual cutting intensity or rare forest types. 
 
In both of these inventory applications, there is a need to monitor forest growth and changes in the years between field 
samples, and to generalize measurements taken on sample plots to areal units.  Satellite remote sensing, from moderate 
resolution sensors such as SPOT or Landsat-TM, has always offered much promise in this field, since it can provide an 
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independent view of large forest holdings for relatively low cost per hectare.  In theory, a new image over the same area 
during the vegetation season every 1-3 years could be used to detect unexpected changes, as well as identify departures 
from expected forest growth predicted by the models.  Such information, at the very least, could be used to direct field 
inventory activities in a more efficient way.  Ideally, satellite image sequences could be fully integrated into a spatially 
and temporally explicit estimation scheme to improve estimates of the current state of the forest. 
 
Yet despite considerable research effort in satellite remote sensing for forestry, it has not been widely used 
operationally.  We could speculate on the historical reasons for this as (1) a lack of facilities for handling spatially 
referenced digital data at the end-user level, (2) lack of precise position information for sample plots, (3) the cost and 
complexity of ordering data, and (4) a lack of suitable methods for handling images together with sample plots to 
extract useful information in the forest inventory context.  At least points 1-3 above have changed recently with 
widespread use of GIS and relational databases for storing inventory information, GPS for positioning plots in the field, 
and efficient web-based tools for ordering low-cost data such as from Landsat-7 ETM+.  This project addresses the 4th 
point, and specifically methods for extracting information about growth from temporal image sequences.   
 
1.2 Spectral Development of Forests Over Time 

The spectral reflectance of tree crowns and forest canopies have been measured and modeled to try to understand the 
relationship between spectral signatures and forest parameters.  Through normal growth and compositional change, the 
spectral signature will change over time in response to changes in the conditions on the ground.  This relationship is 
complex and difficult to model accurately, and unfortunately the traditionally most important inventory parameters 
(stem number, height, volume, basal area, etc) may not be the most important factors for determining the temporal 
course of spectral reflectance (Nilson and Peterson, 1994).  During the early stages of stand growth, the satellite signal 
is dominated by the reflectance characteristics of the field-layer vegetation and exposed soil or rocks.  As trees grow 
and the canopies close over, the background vegetation becomes less important and the species composition and total 
leaf area of the canopy becomes dominant.  Height growth comes into effect mostly through the amount of internal 
shadowing, especially in the shortwave infrared wavelengths because of good atmospheric penetration.  In a mature 
forest with a fully closed canopy and stable leaf area, increases in basal area, and thus volume, have minimal effect on 
spectral reflectance.  The spectral development of a forest stands, as a function of age, are well approximated by a 
decaying exponential function of time within each spectral band.  Of course disturbances will introduce discontinuities 
into this otherwise smooth profile. 
 
It has been proposed that the spectral behavior of forests over time, or its spectral-temporal trajectory, could be used to 
monitor forest development.  Häme (1991) refers to the “spectral life cycle” of a forest stand as its spectral trajectory 
over a full rotation.  He constructed descriptive models for life cycles that included discontinuities caused by periodic 
stand thinning.  Jupp and Walker (1996), outline the potential in this area and suggest using geometric-optical models to 
construct expected profiles, to which observed data can be compared.  Nilson and Peterson (1994) propose that a set of 
tables or curves could be produced that represent expected spectral development for a number of site conditions, as a 
direct analogy to growth curves used widely in forestry.  Here the geometric-optical canopy reflectance model provides 
a link between the forest inventory data and remotely sensed data.  These developments with canopy reflectance 
modeling are certainly encouraging, but to be used effectively, image data must be calibrated to physical units of 
surface reflectance factors to be compared to model outputs.  The alternative is to use methods based on statistical 
relationships rather than physical considerations.  This is the approach taken in this study- we are interested in picking 
out the general spectral trends over time and comparing these profiles in a relative manner. 
 
 
1.3 Objectives 

In this study we explore the possibility to compare forest growth rates on sample plots from a sequence of Landsat TM 
imagery.  The emphasis is using a realistic, rather than ideal, image dataset and using a random sample of forest plots 
from the Swedish NFI that reflects the full variability of forest conditions in the area.  The main question is whether a 
spectral-temporal profile derived from a normalized image data sequence can explain differences in forest productivity.  
We focus on the parameter site index, since it is an important predictor of forest growth, and it is widely used in growth 
modeling.  

2 STUDY AREA AND TEST DATA 
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2.1 Study area 

The study area is in the coastal area of Västerbotten in northern Sweden near the city of Umeå.  This area is 
predominantly forested with stands of pure and mixed Norway spruce (Picea Abies), Scots Pine (Pinus Sylvestris) and 
birch (Betula Pendula).  Land ownership is split between large companies and private owners, but almost all forest land 
is intensively managed for timber and pulpwood production.  The predominant harvesting and management activities in 
the area are clearcutting in blocks of 2-10 ha, possible site preparation by soil scarification, planting, removal of 
deciduous shrubs in young stands, and several commercial thinnings during a stand’s approximate 100 yr rotation 
period.  The study area is shown together with the satellite scene extents in figure 1. 
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2.2 Satellite Imagery 

There were 7 different Landsat scenes over 11 years used for this investigation 
(table 1.).  All images are from the Thematic Mapper sensor aboard Landsat-5 and 
were precision corrected to the Swedish National Grid and resampled to 25m by 
the SSC Satellitbild (now Satellus AB).  The scenes were selected to be relatively 
cloud-free in the area of interest and as close as possible to the peak of the 
vegetation season.  No suitable scenes were available in the missing years.  Not 
all images are full-scenes as is apparent by their extents in figure 1.  In practice 
for the purpose of this investigation, the study area was reduced to the intersection 
of these scenes, so there are no missing values to deal with in the regression 
models. 

 
 

 

Year Date Path/Row 
1985 June 26 193/15 
1989 June 21 193/15 
1990 June 8 193/15 
1992 June 6 194/15 
1994 July 5 193/15 
1995 June 13 194/15 
1996 August 11 193/15 

Figure 1. Satellite scene extents showing the study area (dashed line).  
The scene from 1994 is shown for reference, other scene extents are 
outlined with a solid line. 

Table 1.  Satellite scenes 
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2.3 Field Data 

Field data were collected as a part of the normal operations of the Swedish National Forest Inventory.  Sample plots of 
7m (temporary) or 10m(permanent) radius are arranged in clusters on a regular grid.  Variables are recorded by field 
teams on the sample plots according to an established protocol.  Observations are made about the soil and hydrology 
conditions, ground vegetation, tree size and species composition.  Several variables are derived or calculated for the plot 
level, based on sample trees.  The database was queried for all plots measured within the study area during 1985 to 
1996.  Due to the cyclic nature of the inventory, and the large proportion of temporary plots, very few in this set were 
actually re-measured during the period.  In total 1545 plots were available in the study area after screening for clouds. 
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Unfortunately the position information for the plots is rather variable.  Plots have nominal coordinates according to the 
inventory design.  They may have digitized coordinates from 1:10000 scale maps, and the most recently surveyed plots 
are positioned with differential GPS.  In all cases the best positional information available was used to extract pixel 
values from the image for comparison with the field data.  

3 METHODS 

3.1 Image Normalization 

Differences in atmospheric clarity during the different dates of image acquisition mean pixel values are not directly 
comparable between images in the temporal sequence.  In general the atmosphere affects the recorded radiance through 
attenuation (a wavelength-dependent multiplicative effect) and path radiance (a wavelength-dependent additive effect).  
One approach to calibrating for these differences is to first convert the recorded digital counts to radiance through 
published calibration factors, then model the atmospheric radiative transfer to convert to surface reflectance factors with 
can be compared.  This however requires in situ measurements of atmospheric parameters during the time of image 
acquisition.  For a recent discussion of procedures, see Ouaidrari and Vermote, 1999.  In the absence of in situ 
measurements, the atmospheric parameters may be inferred from radiance over dark targets such as clear lakes (Teillet 
and Fedosejevs, 1995).  This approach to calibration has the advantage of being based on physical considerations, and 
results could be compared to model outputs. However with Landsat-5 at least, the main difficulty may be retrieving 
realistic radiance values from the recorded digital counts.  After several years of operation, the on-board calibration of 
Landsat-5 was essentially unknown, and different receiving stations applied different calibration factors at different 
times for producing data.  For a discussion of the issues, see the appendix in Teillet and Fedosejevs (1995).  Without 
sensible starting values for radiance, the atmospheric correction procedures have almost no chance of producing 

Figure 2a) Stand height v.s. age shows significant variation due to site productivity. b) 
Stem volume (per hectare) as a function of age 
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realistic surface reflectances.  This situation may improve with future sensors, but there are still advantages to using 
purely image-based statistical methods for relative image calibration in this context. 
 
In response to the difficulties with absolute calibration and atmospheric correction, several image-based statistical 
techniques have been used.  These usually make use of the observation that for a narrow field-of-view sensor such as 
Landsat TM, recorded digital counts are a near-linear function of surface reflectance within each spectral band.  Even 
the physics-based calibration procedures arrive at this result after simplifying assumptions are made.  Thus rather than 
estimating linear calibration factors to convert to surface reflectance, you can estimate linear calibration factors to 
compensate for the relative scale difference from one scene to another.  These procedures normally make use of a set of 
stable reflectance targets or so-called pseudoinvariant features (Schott and Salvaggio, 1988, Heo and FitzHugh, 2000), 
or bright and dark control sets derived from image scattergrams (Hall et. al, 1991).  However, for forest monitoring, 
slightly better results can be achieved by using a selection of forest pixels for the ‘stable’ reference (Olsson, 1993).  
This has the effect of also neutralizing other effects such as vegetation phenology and sun-angle effects, at least to the 
best linear approximation. 
 
Here we use a method that was described in Joyce and Olsson (1999).  It consists of deriving a band-specific linear 
correction factors between each pair of adjacent images, and propagating this correction through the sequence to match 
a specified reference.  We used the 1994 image as a reference.  This method achieves good results because the 
correction factors are derived from image pairs that are close together in time, and it doesn’t rely on having complete 
overlap of all images for all dates.  It does not however compensate for the expected drift in the mean value over time. 
 
3.2 Temporal data analysis 

The methods for detecting unexpected changes between two dates of imagery are well developed and tested (see Coppin 
and Bauer, 1996 for a review) but there have been few attempts to use longer time series of images to monitor gradual 
trends such as those associated with forest growth or decline.   Since these are clearly time-dependent data, the first 
thought may be to apply some of the well-developed theory of analysis of time series to model individual plot spectral 
trajectories.  The problem is that these time series are too short to derive estimates of autocorrelation, the time points 
may not be equally spaced, and there may be frequent missing values.  One could also fit individual regression models 
to each short sequence without regard to the serial correlation and use the coefficients of the regression models to make 
inferences.  Lawrence and Ripple (1999) use this technique for monitoring vegetation recovery based on temporally 
modeled crown closure estimates. 
 
There are techniques applied in the social sciences in the field of longitudinal data analysis (see Diggle, 1994) that may 
be useful in this application.  A longitudinal data set consists of time sequences of measurements taken from several 
experimental units (called Subjects from the social science heritage).  The subjects can be regarded as a sample from 
some underlying population, and often have covariate information attached to them.  The focus of longitudinal studies is 
to compare the differences in temporal behavior between subjects or groups.  In this context, our subjects are sample 
plots and the covariate information may be site index or species composition.  The observed response variable over time 
is the spectral values from a normalized image time sequence. 
 
Longitudinal analysis is in contrast to cross-sectional analysis where temporal behavior is inferred by comparing 
experimental units with different ages at a common time.  We start the data exploration by looking at the relationship 
between spectral values and age.  This gives an idea of the expected time profile of an individual plot, however there are 
potentially large differences between conditions on plots that aren’t controlled for.  The advantage of longitudinal 
analysis is that the between-plot differences are separated from the temporal behavior of individual plots. 
 
Statistical analysis was performed with the Oswald extension to Splus (Smith et al, 1996), which is available for free 
from the University of Lancaster.  Oswald extends SPlus data types to include a longitudinal data frame, or collection 
of time series indexed by subject.  Additional covariates can be added to the data frame for use in regression models.  
These covariates can be subject-specific (different values for each subject, but constant over time), or time-specific 
(different value for each time, but constant over subjects).  

4 RESULTS 

4.1 Cross-sectional data exploration   

We start by a cross-sectional data exploration of the 1994 image.  Since the field data are collected on different dates, 
the age is updated to the year 1994.  Age is actually basal-area weighted age on the plot, except in the very young stands 
where the stand age is used.   Scatterplots of spectral values in band 4 and 5 v.s. age are shown in figures 3a and 3b.  
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The lines are local Loess regressions for pine-dominated and spruce-dominated plots.  The purpose is to get an idea of 
the general spectral development profile over the long term.   The interpolated lines are shown on a scatterplot of band 4 
and 5 (fig 3c) to illustrate the changing spectral signature with age.   A monotonic decrease is apparent in both bands, 
with a plausible exponential decay form.  There is large variance around the mean trend, which may reflect differences 
in site conditions and growth rate. 
 

 
 
4.2 Longitudinal comparison between plots 

Now we focus on comparing the temporal behavior of individual 
plots over the 12-year period.  From the cross-sectional view 
above, we would expect that time trajectories for individual plots 
would be generally decreasing over the period, with a rate or slope 
that is influenced by the age of the forest on the plot.  Over this 
short period, we can just examine the linear component of the trend 

as a simplification.  If 
the rate of decrease is a 
function of age, then 
we could theorize that 
for a given age, 
differences in the slope 
would be an indication 
of the productivity of 
the site.  
 
For this investigation, we selected first plots that were pine- dominated and 
between 5 and 50 yrs of age in order to reduce the variance from species 
differences.  There were 251 plots in this subset, and it is rather difficult to 
display all of the temporal profiles graphically, so a subset of 20 are shown 
in figure 4 to give an idea of the variance around individual lines.   
 
In longitudinal analysis it is often useful to first ignore serial correlation 
and fit functions using ordinary least squares to all profiles or groups.  The 
model for this written in longitudinal form would be 
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Figure 3. a) Scatterplot of TM band 4 (1994) vs age with Loess interpolation for pine- and spruce-dominated 
sample plots. b) same with TM band 5. c) Band 4-5 spectral space with the Loess interpolations from a) and b) 
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where y is the response for plot i at time j, α and β are plot-specific intercepts and slopes of individual linear 
regressions.  A scatterplot of the fitted coefficients is shown in figure 5.  The size of the data points varies with the plot 
age.  The fact that some slopes are positive is an artifact of the mean-value trend being removed during image 
normalization. 
 
If we are interested in inferring something about the growth rate from these profiles, the effect of age must somehow be 
removed, either by selecting cohorts in blocks or including the factor of age in the longitudinal regression.  A random 
effects longitudinal regression model was fit to these data treating the slopes and intercepts as random variables.  As 
expected, the factor of age turns out to be highly significant.  Unfortunately when the factor Site Index was added to the 
regression, it turned out to not significant.  This means the opportunity for estimating site index from these profiles, 
after the factor of age is removed, is rather limited. 

5 DISCUSSION AND CONCLUSIONS 

Examining the plots shown in figure 3, it is clear that forest reflectance generally decreases with age in wavelengths for 
both TM4 and TM5.  This is in agreement with results of Nilson and Peterson (1994).  The curve for pine seems to 
reach a flat asymptotic value at a younger age than spruce.  The apparently abrupt change at near 50yrs for pine could 
be an effect of management treatments, where in this area pine stands are typically thinned.  When interpreting the 
profiles in figure 3c, one must keep in mind that these are averaged across many different site conditions and the data 
are not balanced.  Individual profiles could differ considerably from this mean. 
 
This exploration of temporal image data analysis for forest monitoring is meant to illustrate the concept and highlight 
both the potential and the difficulties.  The results were somewhat disappointing in that individual trajectories were 
unable to explain differences in site index from these data.   Some contributing factors are certainly the uncertainties in 
plot positioning, but also the fact that site index itself is a rather coarse predictor of growth.  Future work will address 
other variables that are recorded on the plots to examine what explains differences in temporal trajectories.  The 
multivariate extension using several TM bands is also of interest.    
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