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ABSTRACT

Spectral mixing is inherent in any finite-resolution digital imagery of a heterogeneous surface, so that mixed pixels are
inevitably created when multispectral images are scanned.  Solving the spectral mixture problem is, therefore, involved
in image classification, referring to the techniques of spectral unmixing.  The invention of imaging spectrometers
especially promotes the potential of applying spectral unmixing for sub-pixel classification.  This paper investigates two
spectral unmixing techniques: the least squares (LS) unmixing and the matched filter (MF) unmixing.  Experiments
with a set of AVIRIS data were carried out to evaluate the performance of spectral unmixing.  The MF unmixing
method proved itself to be an effective technique in classifying a hyperspectral image by showing a 90% classification
accuracy.  Whereas, the LS unmixing technique did not show promising results, when it was applied to the original
bands of the test image.  The maximum noise fraction (MNF) transformation, however, is found to be helpful to
promote the performance of the LS unmixing.  Applying the LS unmixing to the MNF transformed images can improve
the classification accuracy for about 20%.

1 INTRODUCTION

In remote-sensing imagery, the measured spectral radiance of a pixel is the integration of the radiance reflected from all
the objects within the ground instantaneous field of view (GIFOV).  Mixed pixels are generated if the size of the pixel
includes more than one type of terrain cover.  Obviously, spectral mixing is inherent in any finite-resolution digital
imagery of a heterogeneous surface.  Solving the spectral mixture problem (Horwitz et al., 1971) is, therefore, involved
in image classification, referring to the techniques of spectral unmixing.  Spectral unmixing is developed based on the
assumption that a pixel composed of multiple components, with known a prior knowledge of their pure signatures, can
be mathematically approximated using a linear mixture model.  Fraction coefficients, representing the proportions of
components within a pixel, can be calculated after unmixing.  Sub-pixel image classification is, therefore, possible to
complete through the computation of spectral unmixing.  Although the proposition of spectral unmixing can be dated to
the earliest of Landsat, its applications in remote sensing were limited due to the low spectral resolution of the sensors
in the past.  The invention of imaging spectrometers (Goetz et al., 1985) promotes the application potential of spectral
unmixing in terms of sub-pixel classification.

Imaging spectrometers measure spectral radiance with high spectral resolution and produce spectral data in tens or
hundreds of bands, as called hyperspectral images.  With the large number of bands, traditional supervised classification
techniques become awkward, because the classification process needs to be done in high dimensional feature space.
Spectral unmixing, however, does not rely on the statistic data of point distribution in the feature space, so that it is
computationally simple and feasible to hyperspectral data processing.  In addition, the large number of spectral bands in
hyperspectral data aids spectral unmixing in two ways.  First, it allows the unmixing of very complex scenes to avoid
intrinsic singular problems.  Second, the high spectral resolution of hyperspectral data permits the direct identification
of image-derived endmember spectra (Boardman, 1994).  To study the capability of spectral unmixing for the
classification of hyperspectral images, this paper investigates two spectral unmixing techniques: the least squares (LS)
unmixing and the matched filter (MF) unmixing.  Experiments with a set of AVIRIS data were carried out to evaluate
the performance of spectral unmixing.  The maximum noise fraction (MNF) transformation is also tried to promote the
performance of the LS unmixing.

Hyperspectral image bands are often highly correlated and among them some of absorption bands contain little signal
but noise.  Analysis of all of the original spectral bands not only is inefficient but also tends to create poor results.  In
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this paper, the maximum noise fraction (MNF) transformation (Green et al., 1988) is applied to segregate noises and to
reduce the data dimensionality.  This procedure promotes the performance of the LS unmixing.

2 SUB-PIXEL CLASSIFICATION

2.1 Linear Mixture Model

With known number of endmembers and giving the spectra of each pure component, the observed pixel value in any
spectral band is modeled by the linear combination of the spectral response of component within the pixel.  This linear
mixture model can be mathematically described as a set of linear vector-matrix equation,
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where:
i = 1,…,m (number of bands);
j = 1,…,n (number of endmembers);
Pi = spectral reflectance of the ith spectral band of a pixel;
Rij = known spectral reflectance of the jth component;
Fj = the fraction coefficient of the jth component within the pixel;
Ei = error for the ith spectral band.

The error terms account for the unmodeled reflectance and represent the unknown noise of observations.  Expanding (1)
to all spectral bands gives the matrix form of the linear unmixing equations
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A physical realistic solution to the linear unmixing problem requires that 1) the sum of the coefficients equals one to
ensure the whole pixel area is represented in the model and 2) each of the fraction coefficients be nonnegative to avoid
negative subpixel areas.  While the first requirement can be modeled by a constraint equation, for the second
requirement, the coefficients need to be constrained by inequalities

1
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These constraints could be problematic, since one is never sure that a sufficient number of endmembers have been
defined for a given set of data.

2.2 Least-Squares (LS) Linear Unmixing

The linear unmixing is an inversion problem of equation (2) with an observed vector P and a given matrix R to solve F.
To obtain a unique solution for the inversion problem, it is assumed that the number of spectral bands m is greater than
the number of endmembers n in the pixel.  In the least-squares approach (Shimabukuro and Smith, 1991) to the
inversion problem, the unmixing coefficients are found by minimizing the sum of the squares of the errors.  When the
constraints listed in equation (3) are ignored, it is equivalent to solving a set of equations of the form
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Expansion of (4) results in the classical multiple linear regression matrix equation, and the least-squares fit estimation
on the unmixing coefficients Fj will be

( ) PRRRF TT 1ˆ −= (5)

Tseng, Yi-Hsing

International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000. 1533



Taking the difference of the observed and the calculated spectral reflectance results in the estimated error terms of the
observations

FRPE ˆˆ −= (6)

The variance of the error terms is a quantitative measure of how the mixture modeling fits the data, which indicates the
feasibility of the solution.  The estimation of the variance is

)(ˆ nmEEE −⋅=σ (7)

The least-squares solution can be modified to fulfill the requirements of constrained fits.  For the first requirement, the
estimated coefficients Fj are modified by taking the linear constraints AF = b into account

)()(ˆ 1 bAPRAARRF TTTT ++= − (8)

Where A is an 1 by n matrix as follows:

[ ]1...11=A ; [ ]1=b

No analytical solutions are known for the inversion problem when the coefficients are constrained by inequalities.  The
use of iterative approaches like the simplex method is needed to implement those constraints (Pesses, 1999).

2.3 Matched Filter (MF) Unmixing

Based on well-known signal processing methodologies, the approach of matched filter unmixing maximizes the
response of a known endmember and suppresses the response of the composite unknown background, thus matching the
known signature.  In this approach, a set of orthogonal matched filter vectors M are constructed to estimate the
unmixing coefficients via a dot product with the observed pixel spectra as follows:

PMF ⋅=ˆ (9)

Each filter vector is chosen to maximize the signal-to-noise ratio and is orthogonal to all endmember spectra except the
one that it represents.  Derived using the calculus of variations, Bowles et al. (1995) proposed a set filter vectors for the
unmixing problem

DDRM 1)( −= (10)
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and U is an n by m matrix with each element  = 1.

Matched filter provides a rapid means of detecting spectral similarities based on matches to specific endmember spectra.
The results of filtering an image are usually presented as n gray-scale images with values from 0 to 1.0, which provide a
means of estimating relative degree of match to the reference spectrum.

3 NOISE SEGREGATION AND DIMENSION REDUCTION

Hyperspectral image bands are often highly correlated and among them some of absorption bands contain little signal
but noise.  Analysis of all of the original spectral bands not only is inefficient but also tends to create poor results.  The
application of the LS unmixing is one of the examples, especially when it is applied to hyperspectral images.  The LS
unmixing is quite sensitive to image noise, because it is based on the assumption that the image has random noise and
no correlation between wavebands.  Therefore, noise segregation and dimension reduction are essential procedures need
to be performed prior to applying the LS unmixing.

For extracting the most signal from a multispectral image, the principal component (PC) transformation is often applied
to produce components that show decreasing image quality with increasing component number.  However, due to the
high between-band correlation, the transformation may lead to generate low-order principal components (Singh and
Harrison, 1985).  The maximum noise fraction (MNF) transformation is therefore proposed by Green et al. (1988) to
produce components ordered by image quality.  The MNF transform was derived as an analogue of the PC transform,
where the criterion for the generation of the components is that they maximize the noise content represented by each
component, rather than the data variance.  In reverse order these components maximize the signal-to-noise ratio (SNR)
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represented by each component.  The MNF transform is a two-step transformation.  The first transformation, based on
an estimated noise covariance matrix, decorrelates and rescales the noise in the data.  This step results in a set of noise-
whitened data in which the noise covariance matrix is the identity matrix.  The second step is a standard PC
transformation of the noise-whitened data.  After the MNF transform, the data space can be divided into two parts: one
part associated with large eigenvalues and coherent eigenimages, and a complementary part with near-unity eigenvalues
and noise-dominated images.  The coherent eigenimages are noise segregated and dimension reduced images.  It is
recommended that the LS unmixing should be applied to the eigenimages only.

4 EXPERIMENTS

4.1 Test Image

The test image (figure 1), downloaded from the web at URL: http://dynamo.ecn.purdue/~biehl/MultiSpec/, is a portion
of the AVIRIS hyperspectral data taken over an agricultural area of NW Indiana in the early growing season of 1992.
The image has the size of 85 rows by 65 columns and 220 bands.  Its corresponding ground truth map is shown in figure
2.  The crop canopies had only 5% cover, the rest being soil covered with the residue of previous year crop.  The label
‘notill’ is an indication of a large amount of residue and ‘min’ indicates a small amount of residue.

Corn-notill

Grass

Soybean-notill

Soybean-min

Figure 1: The test image. Figure 2: The ground truth map.

For the experiments, the endmember spectra of the ground objects were obtained by taking the average spectrum of the
pixels within the area covered by each class.  The ground truth data are also used as test samples to estimate the
accuracy of the classification results.

4.2 The MNF Transformation

To segregate the image noise and to extract the most signal from the original bands, the MNF transformation was
applied to the test image.  For the transformation, the noise statistics were estimated from the data.  A shift-difference is
performed on a selected homogeneous area of the image by differencing adjacent pixels to the right and above each
pixel and averaging the results to estimate the noise of the pixel.  After the transformation, the first 20 eigenimages
were selected as a new set of data of 20 MNF bands.  The cutoff number is determined by checking the MNF
eigenvalue plot shown in figure 3.

Figure 3: The MNF eigenvalue plot.
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4.3 Spectral Unmixing and Classification

The process of spectral unmixing was firstly proceeded with the original image.  Figure 4 and figure 5 show the class
fraction images and the class map resulted from the LS unmixing and the MF unmixing respectively.  Although the
class fraction images represent the consequences of subpixel classification, they do not show directly the distribution of
classified areas.  However, a class map, which is a pixel-based representation of classification, can be generated by
choosing the class with the largest pixel value in the fraction images for output.

            

Figure 4: The class fraction images and class map resulted from the LS unmixing performed on the original image.

            

Figure 5: The class fraction images and class map resulted from the MF unmixing performed on the original image.

The second experiment for unmixing was carried out with the 20 MNF bands extracted from the original image.  Figure
6 and figure 7 show the class fraction images and class map resulted from the LS unmixing and the MF unmixing
respectively.

            

Figure 6: The class fraction images and class map resulted from the LS unmixing performed on the 20 MNF bands.

            

Figure 7: The class fraction images and class map resulted from the MF unmixing performed on the 20 MNF bands.

No evaluation methods are known for sub-pixel classification.  The class map represents the results of pixel-based
classification.  In this paper, therefore, traditional pixel-based accuracy assessment is adopted alternatively to evaluate
the performance of sub-pixel classification.  Table 1 shows the error matrices resulted from the 4 classification methods.
It can be seen that misclassification happens mostly in-between the classes of Corn-notill and Soybean-min, and the LS
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unmixing with the original image has the worst performance.  Table 2 shows the statistical data of the accuracy
assessment.

Table 1: The error matrices resulted from the 4 difference classification methods.

Method LSU MFU LSU_MNF MFU_MNF
Ref. Corn Grass Soy1 Soy2 Corn Grass Soy1 Soy2 Corn Grass Soy1 Soy2 Corn Grass Soy1 Soy2
Corn 651 0 49 298 943 0 13 42 872 18 28 80 933 0 12 53
Grass 51 547 67 37 0 699 3 0 0 680 20 2 0 698 4 0
Soy1 227 0 441 59 11 1 684 31 12 3 654 58 10 2 664 51
Soy2 492 16 59 1338 147 10 133 1615 201 4 163 1537 162 8 147 1588

Table 2: The estimates of overall accuracy (OA) and Kappa coefficient ( κ̂ ) for the classification methods.

LSU MFU LSU_MNF MFU_MNF
OA (%) 68.7 91.0 86.4 89.6
κ̂  (%) 63.7 89.3 83.9 87.8

Corn 77.1 15.8 21.3 17.2
Grass 2.3 1.6 3.6 1.4
Soy1 24.1 20.5 29.0 22.4

Com-
mission
(%)

Soy2 20.7 3.8 7.3 5.5
Corn 34.8 5.5 12.6 6.5
Grass 22.1 0.4 3.1 0.6
Soy1 39.3 5.9 10.0 8.7

Omis-
sion
(%)

Soy2 29.8 15.2 19.3 16.6

When the original images is used, the MF unmixing outrivals the LS unmixing in classification accuracy.  The LS
unmixing gets low classification accuracy mainly due to the large commission error of the Corn-notill class.  The MNF
transform is proved to be a great help to the LS unmixing.  The use of the MNF transformed images improves the
classification accuracy of the LS unmixing for about 20%.

5 CONCLUSIONS

Sub-pixel classification of hyperspectral images using spectral unmixing techniques is promising.  The MF unmixing
method proved itself to be an effective technique in classifying a hyperspectral image by showing a 90% classification
accuracy.  Although the LS unmixing technique did not show promising results when it was applied to the original
bands of the test image, its performance can be promoted as long as image noise is segregated.  Applying the LS
unmixing to the MNF transformed images can improve the classification accuracy for about 20%.

Although conventional pixel-based accuracy assessment is in a sense still available for the evaluation of sub-pixel
classification, it does not take full use of the information content of the data resulted from the sub-pixel classification.
However, an appropriate accuracy assessment for sub-pixel classification is needed in the future.  In fact, Foody (1999)
pointed out that the use of sub-pixel classification does not fully solve the mixed-pixel problem.  The spectral mixture
problem should be considered in the whole classification process, i.e., in the training, classification, and evaluation
stages, so that a continuum of classification fuzziness is defined.  In view of this proposition, techniques to solve
spectral unmixing problem should accommodate spectral mixture into the whole classification process, through the
stages of endmember selection, unmixing, and accuracy assessment.
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