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ABSTRACT

Innovative geometric modeling techniques involving stochastic constraints and linear feature exploitation have been
demonstrated to yield good results in the rectification of  hyperspectral airborne pushbroom imagery.  The unique
aspects of the platform trajectory are particularly well addressed by these techniques.  Supervised statistical pattern
recognition techniques have been developed specifically to address the unique and challenging aspects of high
dimensional data.  These have resulted in processing strategies which are compatible with common desktop computing
resources.  The combination of such thematic class extraction with effective rectification algorithms delivers a powerful
tool into the hands of those building urban databases.

1 INTRODUCTION

 Hyperspectral data analysis has repeatedly been shown to yield high quality thematic class maps in urban areas.
Rigorous geometric sensor and platform modeling have been shown to yield high quality geometric registrations with
such imagery.  But it has been a rare occurrence for these results to be achieved simultaneously.  By using an
interdisciplinary approach to this problem, we have developed a set of interdependent algorithms which collectively
produce accurate thematic material and region delineations.  Other experience has also confirmed that such
interdisciplinary data fusion is the way that such analysis should be carried out.  Data used for the following analysis
was acquired by the HYDICE (Hyperspectral Digital Imagery Collection Experiment) sensor.  It is a pushbroom
airborne imaging spectrometer with 210 spectral channels ranging from 0.4 to 2.5 micrometers.  It has an instantaneous
field of view, IFOV, of 0.5 mrad. The ground sample distance, GSD, is generally 2-3 meters. It operates with a gyro
stabilized platform referred to as the FSP.

2 GEOMETRIC REGISTRATION

The basic principle of the geometry in a pushbroom imaging system can be explained by the collinearity condition,
which requires that a light ray from the ground object to the
image point should be a straight line. In this case, we need six
elements of exterior orientation (EO) for each scan line
because the pushbroom image is collected sequentially line by
line. Consequently so many parameters may need to be solved
for that the problem becomes infeasible due to the number of
required control data in most cases. This situation can be
addressed by using a priori information about the behavior of
the platform.

2.1 Collinearity Equations

The geometric relationship between the ground point and
image point of HYDICE imagery can be simplified as shown
in Figure 1 for a given scan line. From Figure 1, the

Figure 1 HYDICE imaging system
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collinearity equation can be derived easily as in frame photography. The sensor coordinate system (SCS) is a three-
dimensional coordinate system for the image vector in the collinearity equations. The origin of the SCS is determined as
the instantaneous perspective center. The x-direction is coincident to line direction ("along track", in the direction of the
platform motion) and the y-direction is the same as the column direction ("cross track"). The z-direction can be
determined by requiring a right-handed coordinate system. The z-coordinate of the image vector is fixed to -fl, where fl
is the “calibrated” focal length. The calibrated focal length can be considered a constant value over the entire image and
needs to be estimated because only a nominal value (79mm) is available. The relationship between the ground
coordinates and corresponding image coordinates can then be expressed as equation (1) – (3).

0=+=
W

U
flxFx

(1)

0=+=
W

V
flyFy

(2)

















−
−
−

=
















L

L

L

ZZ

YY

XX

M

W

V

U
(3)

where   yx,     : x, y coordinates of image point in image coordinate system

ZYX ,,  : X, Y, Z coordinates of object point in ground coordinate system

LLL ZYX ,,  : X, Y, Z coordinates of instantaneous perspective center in ground coordinate system

M : 3×3 orthogonal rotation matrix from the ground coordinate system to image coordinate system
fl  : calibrated focal length

From equation (1) – (3), notice that the six EO (Exterior Orientation) parameters, consisting of three coordinates

( LLL ZYX ,, ) of the instantaneous perspective center position, and three independent rotational angles (ω, ϕ, κ), have

different values for each scan line. Therefore, at least three control points are required for each scan line.
This problem can be addressed by using a priori information describing the platform behavior. Even though the
HYDICE sensor may encounter severe air stream turbulence during its flight, the FSP preserves the sensor optical axis
within one degree of nadir when the aircraft pitch and roll angles are within 5 degrees of level flight. Aircraft crew
performs aircraft operations to keep the nominal trajectory with a certain range. The time interval between two adjacent
lines is very short (8.3 - 50 msec). Therefore each of the six exterior parameters may change slowly as the line number
increases. Also each EO parameter in a given scan line will be highly correlated to that in a neighboring scan line.
Based on these assumptions, many models have been proposed and subjected to experiment. The spline model has been
often used to model platform trajectories in time-dependent imaging applications. This approach involves the recovery
of spline coefficients, with time as the independent variable, for each of the six elements of exterior orientation. Since
the time interval between exposure of adjacent lines of imagery is constant, as determined by time tags in the data file,
the six time-dependent elements of exterior orientation may be written as a function of line number. The spline model,
although acceptable for modeling the general trend of an aircraft trajectory, is too rigid and too restrictive of control
point distribution to accurately rectify airborne pushbroom imagery. The Gauss-Markov model, which is based on
Gauss Markov process, is flexible in the sense that it can accommodate abrupt changes in the position and orientation of
the sensor aboard the aircraft.

2.2 Gauss Markov Process

The Gauss-Markov (GM) process is a very useful process in engineering applications because many physical processes
are well described by its stochastic properties, and because its mathematical description is relatively simple.
The criterion for a first order Markov process is that the conditional probability distribution of a random process be
dependent only on the one most recent point in the past. For the first order GM, we can make fictitious observations for
6 EO per each line starting the second line,
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where ∆p is correction of each 6 EO element
 i is line number in the image(i = 2,3,...,1280)
s is coefficient for each EO element 
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Similarly, the second order Gauss-Markov process can be defined as a gaussian random process whose conditional
probability distribution is dependent only on the two previous points. The related fictitious observation equation is
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where ∆p is correction of each 6 EO element
 i is line number in the image(i = 3,4,...,1280)
s is coefficient for each EO element 

Note that GM process is applied to the corrections of the six EO elements instead of the six elements themselves.
By adding these fictitious observation equations to the conventional observation equations, 6 EO parameters for each
image line are tied, or constrained, stochastically to other image lines in close proximity.  This model allows for greater
flexibility for linear feature constraints to contribute to parameter recovery, thereby improving rectification accuracy.

2.3 Exploitation of Ground Line Features

The most common control feature used in the triangulation of multispectral imagery as well as traditional frame
photography is the control point. In our data set, the control points coordinates were obtained from triangulated frame
photography that included the HYDICE coverage.
Linear features can be defined as the linked edges that determine object boundaries. Although linear features have not
been widely used in the estimation of exterior orientation (EO) for the time-dependent sensor, many experiments have
been performed and have proven the usefulness of linear features in frame photography applications.
For the pushbroom airborne imaging system, linear features can serve as high-density control data so that high
frequency distortion can be detected and corrected. As can be seen from the raw HYDICE images, the linear features
which suffer worst from roll-induced displacements occur mainly in the direction of the flight line, while linear features,
which are almost perpendicular to the flight line, showed little distortion. Therefore, the linear features in the direction
of ‘across track’ are not helpful to detect high frequency roll-induced distortion.
Although the term linear feature encompasses any continuous feature with a negligible width and includes such
parameterizations as splines, we concern ourselves with the special case of straight-line segments in the remainder of

the paper.

2.3.1   Control Line Model. Line can be used
as control data like control point. At a given
scan line, a image vector L3, which is rotated
to the ground coordinate system, is on a plane
that is defined by the three points, two end
points of the line on the ground space and the
position of instantaneous perspective center.
Therefore the determinant of the three vector in
figure 2 should be equal to zero. The control
line model can be expressed as follows:

0321 == LLLFP (8)
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2.3.2   Constrained Line Model.  Straight-line
features also can be used to constrain point observations on a line. Note that image vectors on a given line are nearly

Figure 2 Control Line Model

Bethel, James

International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000. 185



parallel and vertical. Therefore the elevation of a constrained line couldn't be estimated reliably. To relieve this
situation, we need to assume that linear features are horizontal in the ground space with known elevation. Then the
constrained line model can be made based on the fact that three consecutive points should be on a straight line in the
ground space.

0

111

321

321 ==
YYY

XXXFP (9)

( )

( )
t

t
Lii

t

t
Lii

W

V
ZZY

W

U
ZZX

−=

−=

where [ ] [ ]flyxMWVU ii
TT

ttt −=

2.3.3  Semi-automated Line Extraction. As mentioned previously, the sampling rate is an important factor for the
Gauss-Markov model. To increase the sampling rate, it is desirable to extract each point on every scan line for each
linear feature. Digitizing points manually on the line is time consuming and error-prone work. Fortunately, this time
consuming work can be replaced by a semi-automatic method, which extracts lines automatically given initial
approximate delineation. The method used in this paper is based on time-delayed discrete dynamic programming for
energy minimization of active contours [Amini, et. al., 1990]. In this method, we start with an initial line that is
determined approximately. The position of the line is updated by the influence of image gradients near the edge, and by
internal smoothness of the line. The update continues until no change is produced in the estimated line position.
An energy minimization model has been often used to extract linear features. A typical objective function of such an
energy minimizing model can be expressed by equation (10).
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( )ipEedge  : Energy function related to image gradient

pi : position (l,c) of ith point on the line
α, β: coefficients

This function consists of two energy functions, internal energy and edge energy. The internal energy serves as the
forces that make the line to be smooth. The first term of internal energy is used to make consecutive points closer to one
another and the second term makes the shape of line smooth. The edge energy represents the forces that make the line
take the shape of salient features present in the image. Thus, the line is attracted to image points with high gradient
values.
Dynamic programming is a very useful method for the solution of many optimization problems where a sequence of
inter-related decisions is required. For many optimization problems, it is often possible to decompose a problem into a
sequence of smaller sub-problems. Then, these problems can be solved recursively one at a time. Therefore,
computational effort can be reduced significantly.

2.4 Experiments

The purpose of this section is to compare the accuracy obtained from the restitution of HYDICE imagery using different
platform models. In order to quantify the performance of each model, we examine the residuals of check points.  Since
we have only single image coverage, the Z-coordinate must be fixed to its known value. This does not imply a flat
terrain assumption, only that the various Z coordinates of points and features are indeterminate using a single image.
The estimated coordinates, X est andYest , are computed as follows:
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From equation (12), Z is a known coordinate of the check point. The residuals are then the differences between the
estimated and known values.

XXX estres −= (14)

YYY estres −= (15)

where YX ,  are the known check point ground coordinates

2.4.1 Contribution of Control Lines. Experiments were run to test the contribution of linear features with the first and
second order Gauss-Markov model for varying control features. First, only control points were used to determine the
unknown parameters. Next, the experiments were repeated with control lines in addition to control points. For the first
order Gauss-Markov model, two data sets showed similar results. Adding straight line features to the solution improves
∆Y (cross track) of check points and check lines significantly, while ∆X (along track) of check points were essentially
same: see Tables 1. The second order Gauss-Markov model showed similar results except ∆X of the check points for
the Washington, DC data set (Tables 1). Adding control lines reduced the RMS residual ∆X of check points of the
Washington, DC data set significantly. The results from the first order GM model slightly better than those from the
second order GM model.

Table 1 Contribution of Control Lines

Check Point RMS (m);
Washington, DC

Check Point RMS (m);
Fort HoodGM Control Data

∆X ∆Y ∆d ∆X ∆Y ∆d
Point only 1.95 1.99 2.79 1.61 2.30 2.81

First order Point and Line 1.98 1.61 2.55 1.50 1.32 2.00
Point only 2.50 2.14 3.29 1.67 1.53 2.26Second

order Point and Line 2.01 1.59 2.56 1.61 1.25 2.04

2.4.2 Comparison of Line Models. Two different line models were tested and compared in table 2. The results of the
control line model is significantly better than those of the constrained line model for the RMS residual ∆Y with both of
data sets, while the difference of ∆X of check points was insignificant.

Table 2 Comparison of Line Models

Check Point RMS (m);
Washington, DC

Check Point RMS (m);
Fort HoodLine Model

∆X ∆Y ∆d ∆X ∆Y ∆d
Control Line 1.98 1.61 2.55 1.50 1.32 2.00

Constrained Line 1.93 2.02 2.79 1.64 1.74 2.39

3 EXTRACTION OF THEMATIC CLASSES BY MULTISPECTRAL ANALYSIS

Hyperspectral image data such as that produced by the HYDICE sensor system provide a rich source of spectral
information in image form that can be easily exploited in the task of generating a thematic map of an area. The more
than 200 samples of the spectrum of reflected energy provide ample detail of the spectral response reflected from a
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complex surface such as that of the Earth. However, such data also present some significant subtleties that must be well
understood and properly dealt with if the full information-bearing potential of such data is to be realized.

Any given material on the Earth's surface that one may wish to map will exist in a number of states. This leads to a
given material being characterized by not a single spectral response but by a family or ensemble of spectral responses.
Quite in addition to a typical or average response, the more general ensemble properties will have characteristics useful
for purposes of discriminating between materials in that scene. For example, pixels measured of an agricultural crop on
a given day vary somewhat and this variation will be significantly diagnostic of that crop. Even though the leaves of the
crop may have spectral characteristics very similar to those of a tree species, a pixel that includes a number of crop
plants will carry with it characteristics unique to the crop and different from those of a wooded area, because of the
difference in physical structure of the two types of plants.
Thus, the process of mapping themes of the Earth's surface is one of labeling pixels whose ensemble have variations
that are characteristic of the themes of interest. One is not looking simply for the similarity of a pixel to some spectral
standard so much as looking at the similarity or difference of mixtures of pixel responses.

The most effective way to represent data for this purpose is in terms of a feature space. The concept is to represent the
data values of each pixel as components of a vector. Thus a pixel of 200 band data would be a point in a 200
dimensional vector space, and an ensemble of pixels that represent a given class of surface cover would be a
distribution in this 200 dimensional vector space.

The power of hyperspectral data can then be simply illustrated by noting that if one has data measured in 200 bands
each with 10 bit precision (210 = 1024 shades of gray), then there are 210 raised to the 200th power individual locations in
that feature space for a pixel to be found. That number, 22000 ˜ 10 600 is so large that even if one has a data set of a
million pixels, the probability of any two pixels occurring in the same location in this space is vanishingly small. Thus,
since there is no overlap, theoretically, anything is separable from anything else. The difficulty, on the other hand, is
that one must locate decision boundaries between desired classes in such a large space very precisely in order to achieve
successful discrimination between all the classes existing in such a data set. That is the task that the analyst faces.

Much has been learned in the last few years about how to accomplish this analysis. 1 An important example of this stems
from the fact that, because of the large volume of hyperspectral feature spaces, most of the volume available for a given
data set will be empty, and the significant structure for a specific problem at hand will reside in a lower dimensional
subspace. Thus it is useful to define an optimal linear transformation on the specific data classes desired to find the
lower dimensional space most useful for discriminating the data into desired classes. Such transformations are known as
feature extraction algorithms.

A group of algorithms for accomplishing the this and other necessary processes have been assembled and made
available to the public in a program for personal computers called MultiSpec.2 Though there are a number of details and
variations, the basic analysis process is one of

1. Defining the classes of interest to the analyst by labeling an adequate number of examples of each in the
data set itself.

2. Exercising a feature extraction algorithm that basically defines an optimal subspace for this particular
classification.

3. Choosing and executing an appropriate classification algorithm in the chosen subspace.
The process has become simple enough that a sizable hyperspectral data set of perhaps 150 megabytes can be analyzed
to create a thematic map for 6 to 10 user themes in less than half an hour using less than 3 minutes of computation time
on a contemporary $3000 personal computer.

Figure 3 shows an image sequence of such an analysis of a HYDICE data set of the Washington, DC mall area. The
data set contains 1208 scan lines of 307 pixels (˜370,000 pixels) in 210 bands. The primary task of the analyst is to
specify what classes of surface cover one wishes to discriminate between. In this case, the desired user classes were
Roofs, Road, Grass, Trees, Water and an additional class called Trail to account for the gravel pathways down the mall
itself. An additional class called Shadow was also added to account for the fact that shadow areas will be spectrally

                                                          
1 See for example, David Landgrebe, "Information Extraction Principles and Methods for Multispectral and

Hyperspectral Image Data," Chapter 1 of Information Processing for Remote Sensing,  edited by C. H. Chen,
published by the World Scientific Publishing Co., Inc., 1060 Main Street, River Edge, NJ 07661, USA 1999. This
chapter is also available for download at

 http://dynamo.ecn.purdue.edu/~landgreb/publications.html.
2 MultiSpec and its documentation is available for download at

http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/
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different from directly illuminated areas; because they are quite dark, they would not be that different spectrally from
water in the scene. It is a fundamental requirement that the list of classes must be reasonably exhaustive.

To illustrate the role that the human analyst must play in the process, note that some rooftops are made of gravel/asphalt
mixtures, the same materials used in some roads. In this case it is desired to discriminate between these two classes of
use, and it would be necessary for the analyst to label examples of each if a classifier is to successfully discriminate
between them.

                                                             

Figure 3  Image Sequence: Raw Image, Thematic Classes, Rectified Thematic Classes

Figure 4.  Class labels for the Thematic Image
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4 CONCLUSIONS

The increased spectral resolution afforded by hyperspectral sensors such as HYDICE, together with appropriately
designed statistical pattern recognition algorithms, can yield excellent and reliable material and land cover region
delineation.  Proper modeling of the atmospheric turbulence driven variability in the host aircraft position and angular
trajectory can yield accurate transformations between image and ground coordinates.  The combination of these two
approaches to image exploitation, which have traditionally been carried out in isolation, provides unique information
toward the rigorous development of 3D databases in which the features and textures are both correctly labeled and
correctly positioned.
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