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ABSTRACT

A Neural Network is treated as a data transformer when used for mapping purposes. The objective in this case, is to
associate the elements in one set of data with the elements in a second set. According to this principle, three encoding
methods, namely, single output layer, binary encoding, and ortho-encoding, have been designed for the output layer of a
Neural Network based on five criteria, and put into experiments for Remote Sensing classification by means of a series
of images coordinated with incremental noise level, from 1% to 10%. At last, the experiment results are assessed from
different perspectives such as, accuracy, convergence, mixture detection, and confidence of classification, comparing to
three encoding methods respectively.

1. Introduction

Over the past decades there has been considerable increase in the use of Neural Networks for image classification in
Remote Sensing. Most studies of Neural Networks in this area can be subdivided into various aspects, including the
structure of the Networks (Lippmann, 1987; Caudill, 1988; Pao, 1989; Widrow and Lehr, 1990; Paola and
Schowengerdt, 1995; Fischer and Staufer, 1999), application of Networks (Miller, Kaminsky and Rana, 1994; Yang,
Meer and Bakker, 1999; Atkinson and Tatnall, 1997), and improvements to Neural Networks (Chen, Yen and Tsay,
1997; Kaminsky, Barad and Brown, 1997; Mather, Tso and Koch, 1998; Kavzoglu and Mather, 1999).

There are many different types of neural Networks (Pao, 1989). Rather than describe each type, this paper focuses on
one of the most commonly used Neural Networks in Remote Sensing, Back-Propagation network (BP).

The discussion about the output layout encoding is described by Benediktsson et al. (1990), Heermann and Khazenie
(1992), and Civco (1993). Usually, they used different encoding methods in their classification work, and derived some
conclusions. With great difference from their work, in which the real classification performance has been done using
some particular encoding methodologies, individually, our work focuses on the effectiveness of neural networks based
on these encoding methods, using a series of test images mixed with noise. Comparing different encoding systems, this
work can provide technical guides to the real classification in Remote Sensing in various aspects, such as accuracy,
confidence, mixture detection, and training convergence.

2. The encoding methods of the output layer in BP networks

2.1 The mapping perspective on classification understanding

Neural networks, in the simplest sense, may be seen as data transformers (Pao 1989), where the objective is to associate
the elements in one set of data with the elements in a second set. When applied to classification, for example, they are
concerned with the transformation of data from feature space to class space (Atkinson & Tatnall, 1997). As for a typical
multi-layer perceptron architecture, each node in it can be viewed as a system which combines inputs in a “quasi-linear”
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way and in so doing defines a hyper-surface in a feature space which, when combined with a decision rule or process
can be used to separate hyper-regions and, thus, classes (Kanellopoulos & Wilkinson, 1997). Therefore, expressing the
class space and forming the highest transformation efficiency with precision between feature space and class space will
be a worthy issue for discussing.

Since the input space is unchangeable (in spite of the situation one uses different data sources or auxiliary data sets), the
ways to improve the effectiveness of classification will be a) design of Neural Network architectures, including hidden
layer and an output layer composition, and, b) use of different Neural Networks. Here we choose output layer
composition (or encoding) design for  the former solution.

2.2 The geometric understanding of the composition of output layer

Based on geometric viewpoints, the best way to design the output layer is to scatter the class nodes (which are treated as
M-dimensional distribution of one class, M means output dimensions) as much as possible on a M-dimensional
hyperspace. To design such an output layer, there are two ways to go: a) a way based on single dimension, b) a way
based on multiple dimensions. Fig 1,2 and 3 show the basic structure from one dimension to three dimensions.

To design an output layer for a neural classifier, at least one of the following criteria should be considered:

�  Speed of training. The encoding system is designed to use the shortest time performing a succeed network
training.

�  The maximum scatter degree for output vectors. There are several factors to assess the maximum scatter
degree. One is based on Euclidean distance; another is based on Hamming distance.

� The length of the codeword. The length of the codeword will affect the dimension of class space, and affect the
effectiveness of training procedure at last. Therefore, the short length of codeword is always welcome.

�  The characteristics of ortho-inersection. The ortho-intersection characters existing among output vectors from
one to each other will make the output space redundancy minimized, thus facilitating the training process.

�  The ability to detect mixture features. The best result of classification is extracting relevant features from
remote sensing images with near-zero error, including omission error and commission error. In the real situation,
however, there always exists mis-classification. Therefore, the capability to detect mixture features becomes one
factor to design the output layer composition.
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It is worthy to note that it is almost impossible to
design an encoding system to meet all of the
requirements from the criteria mentioned above.
For example, speed and codeword length are a pair
of paradox factors, so are speed and ortho-
intersection character. Consequently, there should
be some compromise between the factors. Actually,
there are three basic encoding methods with respect
to part of the criteria mentioned above: single
output encoding, binary encoding, and ortho-

encoding (Fig1, Fig 2, and
Fig 3).

The first one called single
output encoding is based
on speed criterion. There
is only one node to
represent the output layer,
the class space. Due to
normalization required in
Neural Networks, the
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output values derived from the activation function are limited (0,1). This means on the continuous one-dimensional
space from 0 to 1, the output classes are represented as a discrete region, which is expressed as an equal length δ=1/M,
where M means the number of the classes (Fig. 1).

The second encoding system called binary encoding is based on the second criterion, the maximum scatter degree
evaluated with Euclidean distance between vectors. Form 2-dimensional demonstration (Fig. 2), one can get an
impression that the vectors to express the maximum scatter locate at the four corners, which expressed by coordination
as (0,0), (0,1), (1,0), and (1,1). One can easily recognize that the coordination is the binary forms of integer number 0,
1,2, and 3. In the 3-dimensional situation (Fig. 3), however, the points with the maximum scatter degree each other are
(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), and (1,1,1), which can be composed in decimal form as
0,1,2,3,4,5,6, and 7, respectively. According to this principle, only log2M output nodes are required to represent M
classes.

Taking into account the third and forth criteria, we can design another encoding system, ortho-encoding method. In this
system, the number of outputs is equal to the number of classes, but the code for class n consists of a 1 value for the first
n outputs and a 0 value for the remaining outputs. The examples of the code vector in 2-dimensional and 3-dimentional
situations (Fig 2 & Fig. 3) can be found from figure labeled with bold lines. This method results in a bigger codeword
length than the above two ways, and also in a larger Hamming distance for the output representations of the classes than
in the previous two cases.

The most important character existing in the third method is its capability to detect the mixture features. According to
this method, each output can be thought of as a membership value to a particular class. When a sigmoid activation
function is used, these membership values are linearly proportional. Thus, a pixel can have a very high value in one
node and low values in the others denoting a strong likelihood of belonging to that one class. If it has two high outputs
then a mix of two classes is detected, and so on.
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Table 1: The feature description about the data
composting the test images (Adopted from ENVI)

A aspenlf2.spc Aspen_Leaf-B DW92-3,
B blackbru.spc Blackbrush ANP92-9A leaves,
C  bluespru.spc Blue_Spruce DW92-5 needle,
D  cheatgra.spc Cheatgrass ANP92-11A mix,
E drygrass.spc Dry_Long_Grass AV87-2,
F  firtree.spc Fir_Tree IH91-2 Complete,
G Grass.spc Lawn_Grass GDS91 (Green),
H  juniper.spc Juniper_Bush IH91-4B whol,
I maplelea.spc Maple_Leaves DW92-1,
J  pinonpin.spc Pinon_Pine ANP92-14A ndl,
K  rabbitbr.spc Rabbitbrush ANP92-27 whol,
L russiano.spc Russian_Olive DW92-4}

3 Experiments and results

3.1 Design of experiments

Network testing is conducted using a program called
NN4RS, which is developed in Visual C++ (6.0)
based on Windows systems. To test the program, a
series of test images have been used. They are
generated as multi-spectral images on the base of real
spectral library (Fig. 4), collected from ENVI library,
with a mixture of various levels of noise to simulate
the situations in the real-world. These images can be
used to test the effectiveness of NN4RS, with respect
to the different output layer encoding methods: single
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Fig 5 The general procedure for design of the test images

 

Fig 4. Spectral curves associated with selected features 

output encoding, binary encoding, and ortho-encoding method. The general procedure is demonstrated in Fig 5.

3.2 Test images and training data sets

The test images include different levels of noise. Therefore, they can be used to test the relevant abilities of recognition
according to the different output encoding methods. To simulate the situations in the real world, even more complicated
than the real ones, a special spectral library, which includes 12 ground features extracted from a USGS Vegetation
Spectral Library, is chose due to its similarity between the features. This similarity usually makes the traditional
classification, such as Maximum Likelihood, SAM, difficult to distinguish features one from another. Table 3 shows the
test images (120x120 pixels) with different noise levels, and their associated spectral curves adopted as training data.



Table 2: The wavelength (µm) details about bands in the test images
Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7
0.4603 0.5587 0.6579 0.7326 0.8283 0.9242 1.0203
Band 8 Band 9 Band 10 Band 11 Band 12 Band 13 Band 14
1.1163 1.2124 1.2812 1.3804 1.4798 1.5792 1.6786

Table 3: The test images with noise and training data sets

Noise level: 1%~5% Noise level: 6%~10%

Test images Training data sets Test images Training data sets
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3.3 Experimental results

Table 4 & 5 show the confusion matrix expression from the classification results. From these results, the final
conclusions can be conducted from four perspectives to assess effectiveness of the classification system, NN4RS:
accuracy perspective, convergence perspective, mixture detection perspective, and confidence perspective.

Table 4: The confusion matrix of classification. Parameters: source image with 1% noise; 3-layer network; 21 nodes in
hidden layer; binary encoding for output layer; learning rate: 0.05 & momentum: 0.003; global confidence: 5.2%;
convergence: 1.7%

1 2 3 4 5 6 7 8 9 10 11 12 Row
Total

Commission
Error [%]

1 1200 1200 0
2 1200 1200 0
3 1200 1200 0
4 1200 1200 0
5 1200 1200 0
6 1186 14 1200 1.17
7 1200 1200 0
8 1200 1200 0
9 1200 1200 0
10 1200 1200 0
11 1200 1200 0
12 1200 1200 0

Column
Total

1200 1200 1200 1200 1200 1186 1200 1200 1200 1214 1200 1200

Omission
Error[%]

0 0 0 0 0 0 0 0 0 1.15 0 0
Total pixels: 14400

Final Accuracy: 99.90 %

Table 5: The confusion matrix of classification. Parameters: source image with 10% noise; 3-layer network; 28 nodes
in hidden layer; binary encoding for output layer; learning rate: 0.05 & momentum: 0.003; global confidence: 5.8%;
convergence: 2.0%

1 2 3 4 5 6 7 8 9 10 11 12
Row
Total

Commission
Error [%]

1 917 20 178 1 17 2 59 1 5 1200 23.58
2 421 8 1 115 4 64 587 1200 64.92
3 24 134 921 20 50 11 1 17 22 1200 23.25
4 1187 6 1 2 4 1200 1.08
5 40 1 1150 9 1200 4.17
6 1 163 1 21 152 1 291 520 1 49 1200 87.33
7 1 11 1 24 28 765 11 110 27 166 56 1200 36.25
8 1 3 1 5 11 1013 4 103 8 51 1200 15.58
9 23 1 4 1 49 1036 1 85 1200 13.67
10 119 8 91 255 717 3 7 1200 40.25
11 2 103 2 6 110 11 12 112 820 22 1200 31.67
12 2 1 153 89 955 1200 20.42

Column
Total

1007 842 1065 1227 1365 424 958 1862 1311 2084 1021 1234

Omission
Error[%]

8.94 50.00 13.52 3.26 15.75 64.15 20.15 45.60 20.98 65.60 19.69 22.61
Total pixels: 14400

Final Accuracy: 69.82 %

                    Zhu, Guobin

           International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Supplement B7. Amsterdam 2000.                 259



1. Accuracy perspective. The classification results from the networks armed with a single output encoding system
are the worst, compared to the other two encoding systems. With respect to the increases of noise within test
images, from 1% to 10%, the recognition accuracy gets down, from 99.9% to 69.8%, in the networks armed with
binary encoding output layer.

2 .  Convergence perspective. The experiment reveals that the training procedures can be stopped at good
convergence, from 1.7% to 5.6%, when binary encoding method and ortho-encoding method are used. However,
when single output encoding method is used, the training procedure shows unstable results, sometimes with good
convergence, while sometimes even divergent.

3. Mixture detection perspective. As we mentioned earlier, the ability of detecting feature mixture only exists in
neural classifiers with ortho-encoding systems. This character can be used to show the local confidence in the
future work.

4. Confidence perspective. The global confidence can only be measured in binary encoding method and ortho-
encoding method. The experimental results show that ortho-encoding method can derive better convergence than
binary encoding method, which is 95.3% in the former one in average, while 97.4% in the latter one.
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