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ABSTRACT

Artificial neural networks have been taken as powerful tools for pattern recognition and data analysis. However, the
previous classification results show differences between the neural network classifier (NNC) and the statistical
methods, such as maximum likelihood classifier (MLC). The reasons for the differences in classification accuracy
were not completely understood. Much research has explored the behaviour of NNCs, including inputs, number of
hidden layer(s), number of nodes, size of sample sets, training parameters. However, little work has been done on
the effect of the overlap degree of patterns in feature space on a NNC. This study analyses the effect of the overlap
degree of classes in feature space on performance of a standard backpropagation NNC and compares the results with
MLC. Two data sets (i.e., the simulated data sets with different overlap degrees and the remotely sensed imagery
with more complicate overlap pattern) are used to test the performance of a neural network. One surprising result is
that NNC failed to discriminate two non-overlapping classes. Another interesting result is that NNC classifies class2
better while MLC classifies class1 better. “Z” statistics is carried out to compare two classifiers and results show
that NNC is significantly better than MLC in the case of using simulated data at 95% C.I., but not significantly
different with MLC in the case of using actual image in the study.

1 INTRODUCTION

Artificial neural networks have successfully classified remotely sensed data (Hepner et al., 1990, Zhuang et al.,
1994, Weeks and Gaston, 1997). There are significant differences between neural network and statistical classifiers,
such as the maximum likelihood classifier (Bischof et al., 1992, Chen et al., 1993, Solaiman and Mouchot, 1994,
Paola and Schowengerdt, 1995, Weeks and Gaston, 1997): (1) neural networks make no assumptions about the input
data; (2) neural networks form non-linear decision boundaries in the feature space; (3) neural networks are robust
when presented with partially incomplete or incorrect input patterns; (4) neural networks can generalise inputs.

In a comprehensive review, Paola and Schowengerdt (1995) concluded that neural network classifiers yield similar
(or slightly higher) accuracy when compared to conventional MLC (Hepner et al., 1990, Key et al., 1990, Bischof et
al., 1992, Kanellopollos et al., 1992, Paola and Schowengerdt, 1994). As a result of the marginal improvement in
mapping accuracy by neural network classifiers, Skidmore et al. (1997) recommended maximum likelihood
classifiers, as they are easier to use. Indeed, some authors have found maximum likelihood classifiers give a higher
mapping accuracy than neural networks (Benediktsson et al., 1990, Solaiman and Mouchot, 1994).

Fierens et al. (1994) were unable to understand why classifiers have differences in accuracy. One of the reasons
could be that the experimental set-ups are not comparable. For instance, texture measures have been used with
NNCs, but not utilised by conventional classifiers (Hepner et al., 1990, Bischof et al, 1992, Paola and
Schowengerdt, 1994, Skidmore et al., 1997). Another reason for differences in classification accuracy is that the
assumptions of a classifier may be better met by a particular image data set. For example, Key et al. (1990) theorised
that NNC avoids assumptions of statistical normality, and has greater flexibility to classify indistinct classes.
However, Benediktsson et al. (1990) used data from a random number generator with normalised distribution and
found the accuracy of the maximum likelihood classifier was higher than a neural network. Thus it may be assumed
that the normalised distribution allows the maximum likelihood method to perform well.

The performance of a backpropagation neural network is affected by many factors. A number of researchers have
focused on exploring the behaviour of neural networks by adjusting factors such as the input data, number of hidden
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layers, number of nodes, as well as different training parameters such as momentum, learning rate and number of
epochs (Benediktsson et al., 1990, Heermann and Khazenie, 1990, Zhuang et al., 1994, Ardo et al., 1997, Skidmore
et al., 1997). However, no authors have investigated the effect of the degree of overlap between classes in feature
space on the performance of neural network and conventional classifiers. The aims of this paper are, by using
different degrees of overlap between classes, to compare: (1) the accuracy of the NNC in response to different
degrees of overlap in simulated data sets; (2) the performance of NNC and MLC under different levels of overlap in
feature space; (3) the performance of the different classifiers on a real image data set.

2 BACKGROUND AND ASSUMPTIONS OF MLC AND NNC

The maximum likelihood classifier is the most commonly used a-MLC b - NNC
supervised classification method. The decision rule is defined by
the multidimensional normal distribution around a class mean
(see figure 1a). Consequently, multi-modal distributed data will
cause an incorrect classification. In addition, overlapping
decision boundaries in feature space will be problematic,
especially if the training data do not physically overlap, but the
decision boundaries do overlap (e.g. Skidmore et al., 1988,
Fierens et al., 1994).

— with no overlap

Neural network classifiers recognise spectral patterns by
learning training sets. They contain three or more layers of
nodes viz. an input layer, (a) hidden layer(s) and an output layer.
The error between the network output and the target is reduced —» !

by adjusting all weights of the network until the system error Figure 1. Decision rules for the different

falls below a user specified threshold. After training, the neural classifiers in a two-dimensional feature space
network system fixes all weights and maintains the original

learning parameters. The classification process calculates the

output of each pixel using the parameters learnt from the training phase, and then decides the class of the pixel.
Solaiman and Mouchot (1994) mentioned that the multi-layer perceptron is a decision-surface based classifier.
According to Skidmore et al. (1988), it is possible to explain the separation of classes by MLC in feature space (see
figure 1a at the left side). Richards (1995), therefore, hypothesised that a hyperplane decision surface between two
different classes may also be created for NNC that can divide the pattern space into different regions (see figure 1b
at the right side).

3 METHODS
3.1 Data sets

Two classes were simulated varying from a condition of no overlap, to a condition of overlap, in order to test the
effect of feature separability and overlap degree on NNC and MLC. The classes were generated for a random normal
distribution in three bands. The total number of pixels per class (i.e., 5000 pixels) was first defined. All these pre-
conditions (such as two classes, three bands and fixed pixels per class) are used to easily compare the classifiers.
Figure 2 shows the feature space of the simulated data sets with two classes in three dimensions.

In addition to the synthetic data sets, the performance of two classifiers were tested using remotely sensed imagery
(viz. Landsat TM and SPOT-pan acquired in 1995 and 1997 respectively) over the Lemeleberg region of the
Netherlands. The images were geometrically rectified and geo-referenced to a common pixel size of 10 by 10
meters. The sub-images contain five ground cover classes.

3.2 Defining separability and degree of overlap of the classes

Accuracy of classification depends on the separability of the classes in feature space. As two classes become further
apart, they have less overlap and may be classified with a greater accuracy. Two measures are used in this study: the
Jeffries-Matusita (JM) distance (ERDAS, 1991) and the simplified Skidmore et al. non-parametric test of overlap
(Skidmore et al., 1988).
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Mathematical separability is normally used to discard classes with little contribution to a classification (Richards,
1995). The JM Distance is a parametric measure of the average distance between the density function of two classes.
For normally distributed classes, JM Distance may be defined as:

Ji=2(1-e") (1)

where B is the Bhattacharyya Distance:

. : Ci+C)2
B=1/8w—u)‘{c—gc—’}-‘w—m+1/2m{|(—+—)—|} @)

i and j are two classes being compared, p; and p; are the mean vectors of the two classes and C; and C; are the
variance-covariance matrices of the two classes. The JM distance ranges from 0 where the two classes completely
overlap to 2 where the two classes completely are separate from each other.

class2
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Figure 2. The feature space of the simulated data sets in three dimensions

Skidmore et al. (1988) developed a general algorithm to quantify the degree of overlap of classes. It is a non-
parametric test of overlap that does not depend on statistical parameters. The Skidmore et al. Ry(f) value ranges from
0 to 1, where 0 equates to complete overlap, while 1 means the two classes have no overlap at all, that is completely
separate from each other. In this study, a simplified Skidmore et al. non-parametric was used:

Ri=F(X)/N: 3)

where Fy(X) is defined as the frequency of pixels in the training set belonging to class i, N; is the total number of
pixels of the training set of class i, and R; is the proportion of Fy(X) and N;, which is used to indicate the overlap
degree of class i with other classes. If Ri=1, this class has no overlap with other classes, while if R;<1, the class has
overlap with other classes.

3.3 Configuring the neural network

The neural networks with three layers (1 input layer, 1 hidden layer and 1 output layer) were constructed with
varying number of nodes. A 3-5-2 network, e.g. three input nodes, five hidden nodes and two output nodes was
applied to the simulated data sets, while a 3-5-5 network was developed for the real image data. In order to optimise
training, a small learning rate (0.001) and momentum (0.01) were used.
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3.4 Testing the neural network classifier using simulated data sets

A number of different conditions are tested using the neural network classifier, including two overlap situations, the
size of the training sample sets (i.e., 200, 400, 800, 1600 and 2500), and the system error. The test sets per class are
the pixels (i.e., 4800, 4600, 4200, 3400 and 2500) remained after excluding the training samples from 5000 pixels
per class. The overall accuracy was calculated and used for evaluating the influence of different experiment
conditions on NNC.

3.5 Comparing the classifiers using both simulated and remotely sensed imagery and ‘Z’ statistics

Both simulated data and remotely sensed imagery were classified using the NNC and MLC in order to test the effect
of feature separability and overlap degree on classification accuracy. The same training samples and testing sets
were used for two classifiers.

The measure of the agreement between two separate error matrices, called KHAT, can be used to test the significant
difference between two classified images (Congalton et al., 1983, Foody, 1992). A pairwise test of significance can
be performed between two independent KHATSs using the normal curve deviate to determine if the two error
matrices are significantly different (Cohen, 1960). The classifiers tested in this study are compared using KHAT
measure, or called ‘z’ statistic (see equation (4)). K; and K, represents the KHAT values calculated from two

different classifications. JK‘Z and 5&2 are the variances from K, and K, respectively. For pairwise comparison, a

null hypothesis can be defined to test whether the K values for two classifications differ. The null hypothesis is
rejected using the normal curve deviate statistic (z) for a=0.05 if Z>1.96. Note that the compared result from NNC
is the one at the system error of 0.01 for ‘no overlap’ situation and 0.035 for ‘overlap’ situation.

K, -K

2 2
Oy =+ Oy,

4 RESULTS

4.1 Measuring the separability and overlap degree for the simulated data set

The separability (JM distance) and degree of overlap

A | . Sample size No overlap Overlap
(R; value) are detailed in table 1. The JM distances are per class TM distance | SimplificdRi_| JM distance | _Simplified Ri
approximately 1.52 under the no overlap situation and 20 119 R e | oo
approximately 1.51 under the overlap situation. 400 1518 Rel=1.000 1509 Rel=0.990
S. 1 . f h 1 . d h 1 R¢2=1.000 Rc2=0.988
imilarity of these results indicates that the two classes 300 1517 Ro1=1.000 1509 Ro1=0.974
can not be completely separated under both situations. Rc2-1.000 Rc220.970
. . 1600 1.518 Rc1=1.000 1.509 Rc1=0.975
Nevertheless, the simplified-R; values are all equal to 1 Re2=1.000 Re2=0.972
. : . 2500 1.518 Rc1=1.000 1.509 Re1=0.971
under the no overlap situation which exactly show two Re2—1.000 Re2—0.969
classes have no overlap, and vary from 0.969 to 0.995 Table 1. JM distance and simplified R; value under
under the overlap situation. different sampling schemes

4.2 Performance of the different classifiers with simulated data set

For the ‘no overlap’ condition, Figure 3 summarises the change in classification accuracy in response to a varying
system error and training set size. Similarly, Figure 4 summarises the results under the ‘overlap’ condition. Note that
0.1, 0.075, 0.05, 0.035, 0.025, 0.01 are the system error levels applied to NNC, while MLC refers to the results from
maximum likelihood classifier. Under overlap situation, training NNC became difficulty and stopped at the system
error of 0.035. Figures 3a and 4a show that the number of correctly classified pixels in class1 increases as the system
error reduces and the size of the training sample set enlarges. However, the number of correctly classified pixels in
class2 varies under the similar conditions (figure 3b, 4b). The number of pixels correctly classified by NNC for both
two classes under the no overlap situation is higher than under the overlap situation. Figures 3¢ and 4¢ show that the
overall classification accuracy is higher under the small system error and non-overlap situation. The surprising result
is that the neural network fails to classify two ‘no overlap’ classes with an accuracy of 100 per cent.

The results from NNC are compared with the traditional MLC and the classified images from MLC and NNC with
the system error 0.01 for no overlap situation and 0.035 for overlap situation are shown in figure 5. Under both the
non-overlap and overlap situations, MLC and NNC have the different results on classifying two classes. NNC
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classifies class2 with a higher

Table 2 details the separability
(JM distance) of pairs of classes

accuracy while MLC classifies sma:(:orrect'lz'rc‘l::sssizied pixels _ b:Correc:grcclla:sssifzied pixels ] ¢: Overall accuracy
classl better. When viewed as o o o T e e
classified images, figure 5 - e —e—we - DR o —e—ue
highlights the differences |3 VV/,,:(—'*—-* . F/‘%Z = ﬁ
between MLC and NNC. 3 :. g
2 ///_‘ i : . —
4.3 Performance of NNC and :“ - :- . = '
MLC using Landsat TM and 3 /_/-/"" H S I e
SPOT-pan imagery - f//_'“’ . -
The performance of the NNC and PSR — oo e
MLC was evaluated using the Difterent sizes of tralning sats Different sizes of training sets Different sizes of training sets
combined Landsat TM and
SPOT-pan 1images comprising Figure 3. Results of NNC and MLC under no overlap situation
three channels: TM b?nd 2 and 4, a: Correctly classified pixels b: Correctly classified pixels ¢: Overall accuracy
and SPOT-pan. Five ground - for class 1 . for class2
covers were recognised in the = o e
field, viz. Forest (F), pasture (P), o - -
heathland (H), arableland (A) and 3 — o 2k e a—a |
buildup area (B). 3o j 3 o > 415 | ety
f: /,/-——-/. i @ =§ -y i
3 s

i - —" /\'—-/'

as well as the overlap degree (R; =7 /'\./'/
value) of each class with other .
classes based on the sample sets. e m w T e w wm we we AP e
rIvhe hlgheSt Separabﬂity iS Different sizes of training sets Different sizes of training sets Different sizes of training sets
between pasture and forest, Figure 4. Results of NNC and MLC under overlap situation

followed by forest and
arableland, pasture and heathland,
pasture and buildup. The R; values show forest No Overlap Situation Overlap Situation
and pasture do not overlap with the other MLC NNC

classes in the training sample sets, while the - E
other three classes have some overlap with
each other. The buildup-area class has the
highest degree of overlap with other classes
followed by the arableland class. Table 3
details the accuracy matrices for the
classification of the real image by the NNC
and MLC. NNC has the highest overall
accuracy, being a little higher than MLC. The
pasture class was classified with the highest
producer accuracy and the buildup-area class w00
with the lowest producer accuracy. NNC did M saunples
not separate the forest and pasture classes from R
the other three classes with 100 per cent
accuracy although the R; values show that
these two classes have no overlap. 1600

- | samples

4.4 °Z’ statistic test to compare NNC and
MLC

Table 4 details whether there is a statistically
significant difference between the accuracy of
the images produced by NNC and MLC
classifiers, shown by all ‘z’ values. Under the
no overlap situation with the simulated data
sets, NNC and MLC show no significant Figure 5. The classified images from NNC and MLC
difference with small samples but significant for two overlap situations
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difference with large samples. With the overlapping
classes, NNC has a significantly higher accuracy than

4 M Ri Training

MLC mostly. In the case of the Lemeleberg image F] P H A B Samples
: H H : o . Flo0 1.60 1.514 1.595 1.536 Re=1 285
classification, there is no significant difference between P e B R I ] oo
NNC and MLC although NNC has a slightly higher H 0 1545 | 1.506 | Ry=0.937 | 300
A 0 1.519 R,=0.913 480
overall accuracy than MLC. 5 5 T o057 oz

5 DISCUSSION

Table 2. The JM distances and Simplified R; value

: : : Classes Classes from NNC classification Producer Overall
Accordlgg to .Rlchards (1995), a JM distance o acouracy | accuracy
of 2.0 implies that the classes may be test sets (%)

. . (N=5319)* F P H A B
classified with an accuracy of 100 per cent. F 1560 > 113 0 0 0.90
Therefore, the JM values in table 1 show ; 32 ”i‘; Gfé g 1; gzg
that there is overlap for both the ‘no overlap’ N ) 20 0 520 2 078
and the ‘overlap’ situations. However, if we B 0 153 112 137 | 3 048 82.40
3 H : ' X Overall
IOOk‘at thC mmp}lﬁc?d Sl_(ldmore § R‘ values, Classes Classes from MLC classification Producer accuracy
the ‘no overlap’ situation has a R; value from accuracy | (%)
1 1 0 1 h . th . test sets F P H A B
equal to 1.0, correctly showing there is no T 1156 T i 5 7 05
overlap between two classes. Thus, the JM P 0] 190 39 0 1 0.97
: f h 11 1 H 11 57 672 0 3 0.90
informs a user on how well two classes may - 5 3 R YT YT 073
be classified, but gives no information about B 0 147 103 89 437 0.56 81.35

the degree of overlap. * N --- total sample number for testing.

Table 3. Overall accuracies of classification using two
One important result of this study is that classifiers
NNC failed to classify the two ‘no

overlapping’ classes in the feature space

although NNC produces a higher classification accuracy than
MLC. Since a decision hyper plane can be formed by the NNC
between two classes (Richards 1995), theoretically, NNC
should be able to classify two non-overlapping classes with
overall accuracy of 100 per cent, if it can be well trained.
However, training sets represent only part of the whole data

set.

Z for ‘no overlap’
situation
0.1008
1.8062
4.9620*
5.4303*%
5.4303%

Z for ‘overlap’

situation
0.5801
4.0966*
2.7983*
4.7970*
1.7193

Sample size

200

200

800

1600

2500

Remotely sensed

imagery 1.2872
* with significant difference at 95% C.1.

Table 4. Pairwise comparisons between
MLC and NNC

Turning now to the classification accuracy of individual

classifiers, it has been shown that MLC classifies class1 with a

high accuracy but has more misclassified pixels in class2, while NNC obtains the highest accuracy with class2 and
produces more misclassified pixels in class 1. MLC is a parametric method which utilises the mean and standard
deviation of each band. Therefore, as class1 covers a large spectral range, MLC can classify class] better using the
shortest Mahalanobis distance and also decides its lower accuracy in classifying class2 due to its decision rule (see
figure 1a). However, it is not completely clear why non-parametric NNC can not classify class1 as good as class2
(see figure 1b). One reason could be the size of training sample set because class1 has a wide range of brightness
values. A similar result was also obtained by Downey et al. (1992), who found that NNC achieved accuracies of
90.59% and 12.49% for woodland and cropland classes respectively compared to 34.99% and 66.46% for the same
two classes using MLC. It implies that integrating two methods together may get higher classification accuracy
because two methods can compensate each other.

When remotely sensed imagery were investigated, the high simplified R; values for the forest and pasture classes
indicated that these two classes do not overlap with any other class in feature space. However, the classification
accuracies for these two classes are lower than 100 per cent. The classifiers (NNC and MLC) are able to create
decision surfaces that can discriminate the classes in feature space. As the NNC is a non-parametric classifier, it is
surprising that the decision surface could not better discriminate the non-overlapping classes, similar as the results
from the simulated data set. It may be due to the sample set can not represent the whole data set. The “buildup area’
class has a high level of overlap with other classes in feature space, e.g., has the lowest R;-value of 0.897 and JM-
value of 1.506, and also the lowest classification accuracy.

6 CONCLUSION
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It is concluded from the study that overlap of classes in feature space produces misclassification by both NNC and
MLC, for both simulated data and remotely sensed imagery. Experiments based on the simulated data sets shows
that NNC and MLC have different accuracies in mapping the two classes. The well-trained neural network can
classify the simulated data sets significantly better than MLC. Classification of remotely sensed imagery (Landsat
TM and SPOT-pan) in Lemeleberg, the Netherlands, shows that there is no significant difference between NNC and
MLC.
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