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ABSTRACT:  
 
An automated method for boundary representation of building objects has been considered as a core processor for 3D city modelling. 
Since the reconstruction of generic building shape fundamentally depends on geometric features extracted from data sources, it 
suffers difficulties especially when a monocular imagery with high scene complexity is solely used. The research described in this 
paper aims to develop an automated method for building extraction, in which individual building object is localized and boundaries 
of polyhedral building shape are delineated with a less specific building model. The developed technique focuses on an exploitation 
of synergy of Ikonos imagery combined with a LIDAR DEM. Individual buildings are localized with rectangle polygon by a 
hierarchical segmentation of LIDAR DEM and Ikonos multi-spectral information. This polygon is recursively partitioned by linear 
features extracted from Ikonos image and LIDAR space, which results in a set of convex polygons. Only polygons comprising 
“significant” parts of building shape are verified and aggregated.  Finally, polyhedral building shapes are reconstructed. Several 
results are presented with a discussion of evaluation and limitations of our method.  
 
 

1. INTRODUCTION 

A lot of photogrammetry research has been focused on the 
development of techniques to reconstruct the boundary 
representation of building objects in high-density urban areas. 
The automation of this building extraction technique is essential 
in dealing with the increased demand for 3D city modelling as 
an efficient method for compilation of building layers, or as a 
base layer for 3D reconstruction of building models.  
 
In earlier days, most building extraction techniques have relied 
on 2D feature analysis (Janes et al., 1994; Kim & Muller, 1995; 
Noronha & Nevatia, 1997), in which straight lines or corners 
extracted from aerial photographs are perceptually grouped, but 
the building model targeted is rather strongly constrained to 
decrease the uncertainty of building hypothesis generation and 
its verification. For achieving more unconstrained building 
representation, this technique has been extended to 3D feature 
analysis using multiple imageries, in which higher density of 
features belonging to building structure, are generated and 
grouped; to this end, 3D corners (Fischer et al., 1998), 3D lines 
(Baillard et, al., 1999a), and 3D planar polygons (Ameri & 
Fritsch, 2000) were used. Since the aforementioned approaches 
rely on the reliability and density of features extracted from 
aerial photographs, these techniques suffer difficulties when 
extracted features are highly fragmented or missed due to low 
contrast, occlusion and shadow effects. 
 
Thus, other data sources have been exploited for compensating 
for the disadvantages of aerial photograph. In this area, LIDAR 
data, which is acquired by airborne laser scanners, has been 
used as an attractive alternative to aerial photography due to 
high vertical accuracy and high point density. As a single 
source, LIDAR data has been used to reconstruct various types 
of building shape; parametric model (Mass & Vosselman, 1999; 
Wang & Schenk, 2000), prismatic model with flat roof 
(Weidner & Förstner, 1995) and polyhedral building with the 

restriction on building orientation (Vosselman, 1999). Although 
LIDAR data have several advantages of building localization 
and planar patch extraction compared to aerial photographs, 
there is also drawback to delineate building boundaries with 
break-lines when LIDAR data is solely used, even with 
extremely high density of 7 points per square metre 
(Vosselman, 1999). Therefore, a fusion technique is 
recommended to combine the complementary nature of the two 
different data sources for building extraction (Schenk & Csatho, 
2002). 
  
The research described in this paper aims to exploit a synergy 
of single Ikonos satellite imagery with 1-metre resolution, and 
LIDAR data with 3-metre point spacing. Several aspects are 
considered in our research; firstly, considering the complexity 
of high-density urban area, an individual building object is 
separated from surrounding objects before applying our 
building extraction algorithm; secondly, because rather coarse 
resolution datasets are used, the use of LIDAR data is 
investigated for use when linear features extracted from single 
Ikonos imagery are not sufficient for building boundary 
representation; finally, the coarse resolution of LIDAR data 
used makes it difficult to extract reliable planar roof faces or 
coplanar grouping of linear features. Thus, a method to 
delineate a polyhedral building shape by only linear features 
extracted from the two different datasets is targeted.  
 
Our building extraction method can be categorized into the 
following sequential processes; (1) a localization of individual 
buildings is achieved by hierarchical segmentation of LIDAR 
space combined with Ikonos multi-spectral bands; (2) 
“intensity” line cues are extracted from Ikonos imagery and 
then, the verification of boundary lines is made over LIDAR 
space; (3) “virtual” line cues are generated, in which parallel 
and “U” structured boundary lines are inferred over LIDAR 
space from each “intensity” line cue; (4) a polyhedral building 
shape is reconstructed by a collection of “significant” parts with 



 

polygon geometry, which is obtained by recursive partitioning 
of individual building blobs with integrated line cues. 
 
In next section, we describe a building localization method, in 
which individual building objects are bounded with rectangles 
for further processing. In section three, we describe cue 
generation and grouping process for the boundary 
representation of a polyhedral building shape. In section four, 
some results are presented with a discussion of evaluation and 
limitations of our method. Finally, we draw conclusions and 
suggest future research tasks. 
 
 

2. BUILDING LOCALIZATION 

The scene complexity of high-density urban areas degrades 
interpretation of single objects, which leads to generation of 
extraneous hypotheses and requires much larger verification 
evidence. To cope with this problem, a focusing strategy has 
been proposed by many researches (Brunn & Weidner, 1997; 
Baillard & Maitre, 1999; Haala, 1994; Weidner & Förstner, 
1995), in which individual buildings are separated from other 
objects. These approaches share a common strategy of 
hierarchical object localization, in which on-terrain features and 
off-terrain features are differentiated with the support of high-
resolution height information and then, off-terrain features are 
further classified into tree and building object classes. As a final 
result, individual buildings are localized with spatial 
information bounding them.  
 
Sohn and Dowman (2002) developed a LIDAR filtering 
technique to automatically differentiate on-terrain points from 
off-terrain ones using irregularly spaced LIDAR data. This 
technique was developed to make a LIDAR filter to be self-
adaptive to various landforms with different slopes. The 
fundamental idea behind this is to fragment a LIDAR DEM 
convolved with heterogeneous terrain slopes (see Figure 1 (a)) 
into a set of homogeneous sub-region, where underlying terrain 
can be characterized by single slope (see Figure 1 (b)). Once 
these homogeneous sub-regions are achieved, the separation 
between on-terrain points and off-terrain points becomes much 
simpler, as terrain characteristics are uniformly regularized.  
 
 
 
 
 
 
 
              (a) LIDAR DEM          (b) fragmented terrain  
 
Figure 1. Illustration of the suggested terrain fragmentation 

idea; darker grey colour means more different terrain slopes 
are mixed up in a region.  

 
To realize the aforementioned terrain fragmentation idea, an 
elementary terrain model is employed for the reconstruction of 
generic terrain surface. That elementary model is a planar 
terrain surface (PTS), which is formed in a triangle shape and 
its three vertices consist of on-terrain points. When a PTS is 
hypothesized as “real” terrain model over an arbitrary area, 
several important relationships are defined between PTS and its 
member points: i) all the member points must be located above 
PTS (“positive terrain” criterion); ii) member points with less 
than certain height threshold from PTS are recognized as on-
terrain points (“continuity” criterion); iii) the populated on-

terrain points over PTS must have the same slope 
(“homogeneity” criterion). If the PTS satisfies these criteria, its 
hypothesis as being a planar terrain is verified; otherwise, the 
most reliable on-terrain point is selected out of its member 
points and the PTS is fragmented by a Delaunay Triangulation 
method using the selected on-terrain point. In this way, a 
LIDAR DEM is recursively fragmented from “coarse” to “fine” 
scale until all the fragmented segments are verified as PTS. In 
consequence, the Digital Terrain Model (DTM) is reconstructed 
by collecting PTSs fragmented at the “finest” scale. 
 
This recursive terrain fragmentation was implemented by a two-
step divide-and-conquer triangulation method, in which a 
LIDAR DEM is fragmented in downward and upward direction. 
In downward fragmentation, a single PTS is hypothesized as a 
terrain surface of the entire LIDAR DEM. If this initial plane is 
not satisfied with the “positive terrain” criterion, the plane is 
fragmented by selecting a LIDAR point with the minimum 
distance from the plane and labelling it as on-terrain point. This 
process continues until all the LIDAR point is located above 
fragmented PTSs. Then, the upward fragmentation process 
starts. First, triggering the upward fragmentation for each PTS 
is determined as investigating whether or not populated on-
terrain points have the same slope. If the upward fragmentation 
is determined over a PTS, three vertices of the PTS and each 
on-terrain point generated from it are served as constructing a 
tetrahedron model. Thus, a number of tetrahedron models are 
generated by all the on-terrain member points and three lateral 
facet of each tetrahedron are hypothesized as PTS. The “best” 
tetrahedron model is selected when it leads to a minimum 
classification error of on- and off-terrain points populated by 
the model. This model selection was implemented in MDL 
(Minimum Description Length) framework, where “better” 
model generates smaller angle dispersions between on-on 
paired slopes and the tetrahedron model, while bigger angles 
dispersions between on-off paired slopes and the tetrahedron 
model. Finally, by selecting the on-terrain member point 
constructing the “best” tetrahedron model, the PTS is 
triangulated and thus, fragmented into smaller sub-regions. This 
process continues until all the PTSs satisfy the “homogeneity” 
criterion. In consequence, LIDAR points comprising PTSs 
fragmented at the finest scale are classified into on-terrain 
points, otherwise, off-terrain labels. 
 
The remaining process for the localization of individual 
buildings is rather straightforward. For obtaining more reliable 
off-terrain points only belonging to tree and building objects, 
outlying points with a height less than a defined threshold from 
the generated DTM are removed. Then, differentiating building 
objects from trees is made by the use of Ikonos multi-spectral 
bands; the normalized difference vegetation indices (NDVI) are 
computed by a combination of red and near-infrared channels of 
Ikonos. When LIDAR points are back-projected onto Ikonos 
image space, a small size of mask is made around them over the 
NDVI map and a vegetated LIDAR point is detected if a NDVI 
value larger than a certain threshold is found in the mask. Thus, 
off-terrain labels are further segmented into building and tree-
label class. After a connected component labelling process is 
applied to irregularly distributed label space, individual 
building objects are extracted with the boundary information. 
These building blobs are represented with rectangle polygons, 
which feedback to recursive partitioning for building extraction. 
 



 

 
(a) LIDAR DEM 

 

 
(b) reconstructed DTM 

 
 

 
(c) Ikonos imagery overlaid with building blob polygons 

 
Figure 2. Building localization results. 
 
 

3. BUILDING EXTRACTION 

 
3.1 Intensity line cue generation and filtering 

It is assumed that a generic building shape consists of a set of 
rectilinear lines, but without the limitation of directionality. 
Thus, as a primary cue for building extraction, straight lines are 
extracted from Ikonos imagery by the Burns algorithm (Burns 
et al. 1986). Since extracted line features include a number of 
extraneous line segments, uncorrelated to building saliencies, it 
is necessary to filter those distracting features so that only 
focused lines with significant length located around building 
boundaries remain. To this end, on-terrain and building-label 
points classified by our LIDAR filter are used to determine 
whether or not line primitives can be considered as boundary 
lines.  
 

First, straight lines extracted by the Burns algorithm are filtered 
by a length criterion, by which only lines larger than pre-
specified length threshold remain for further processing. Then, 
two rectangle boxes with certain width, lw, are generated along 
two orthogonal directions to the line vector filtered in length. 
The determination of a boundary line can be given if on-terrain 
and building-label points are simultaneously found in both 
boxes or if only building-label points are found in one of the 
boxes and no LIDAR point can be found in the other box. The 
latter boundary line condition is considered if a low density 
LIDAR dataset is used. 
 
As a final line filtering process, a geometric disturbance 
corrupted by noise is regularized over boundary lines. A set of 
dominant line angles of boundary lines is analysed from a 
gradient-weighted histogram quantized in 255 discrete angular 
units. In order to separate a weak, but significant peak from 
other nearby dominant angles, a hierarchical histogram-
clustering method is applied; once the dominant angle, θd, is 
obtained, lines with angle discrepancies are less than certain 
angel thresholds, θth, from θd are found, and their line 
geometries are modified as their angles are replaced with θd. 
These modified lines do not contribute to the succeeding 
dominant angle analysis and the next dominant angle is 
obtained. In this way, a set of dominant angles is obtained, by 
which geometric properties of boundary lines can be 
regularized. Figure 3 shows boundary lines extracted by the 
support of labelled LIDAR points, after being filtered in length 
and geometrically regularized in angle, where the length 
criterion, θth and lw are selected as 5-metre, 30º and 5-metre 
respectively. 
 
  

                 
     (a) extracted straight lines        (b) filtered boundary lines 
 
Figure 3. Extracted building boundary lines from Ikonos 

imagery. 
 
 
3.2 Virtual line cue generation 

Since our research aims to represent a polyhedral building 
shape by only boundary lines, much larger numbers of line cue 
need to be obtained than in the case of a parametric building 
model, it is, however, always a bottle-neck to extract such a cue 
density due to low contrast, shadow overcast, and occlusion 
effects, especially when 1-mere satellite imagery of a complex 
scene is solely used. Thus, virtual line cues are extracted from 
LIDAR space in order to compensate for the lack of intensity 
line cue density.  
 
For extracting virtual line cues, the second constraint of 
polyhedral building shape is assumed that a generic polyhedral 
building shape is made in some degree of geometric regularity. 
Based upon this, for each intensity line cue, parallel and “U” 
structured boundary lines are inferred from LIDAR space. Note 
that the assumption of geometric regularity is used as a weak 
constraint in our building extraction process since the geometry 



 

of a polyhedral building may not have any symmetric property. 
That is, only a portion of virtual cues could be involved to 
recover significant boundary segments missed in intensity line 
cue generation. It is, however, subject to the degree of 
complexity of individual buildings as to what percentage of 
virtual lines cue can be used. Therefore, a verification process 
of virtual line cues is necessary. In our method, it will be 
automatically determined at a higher level of cue generation, 
namely polygon cue generation, whether or not a virtual line 
cue should be used in boundary representation of polyhedral 
building shape. 
 
The process aims to acquire at most three virtual lines starting 
from an intensity line cue, but it could fail to generate any 
virtual line cue. The main idea of virtual line detection is that a 
small virtual box is generated from each intensity line and it 
grows over building roof so that building-label points are 
maximally captured without including any on-terrain point. 
First, a box growing direction, pointing to the location of 
parallel boundary line, is determined from the selected intensity 
line. To that direction, a small virtual box is generated and 
grows until it comes across any on-terrain point. Then, it de-
grows in order to have maximum building-label points while in 
its minimum size (see Figure 4 (a)). In this way, the virtual box 
is expanded, but at this time, towards to two orthogonal 
directions to the parallel boundary line detected (see Figure 4 
(b)). Thus, “U” structured boundary lines made with the parallel 
boundary line can be detected. Finally, these three virtual lines 
detected are back-projected onto image space and then, their 
line geometry is adjusted by gradient weighted least-square 
method (see Figure 4 (c)). 
 
  

             
(a) parallel line detection         (b) “U” structure line detection 
 

             
(c) gradient fitted virtual lines   (d) entire virtual lines detected 
 
Figure 4. Results of virtual line cue generation; white lines 

represents detected virtual lines, white arrow points to the 
virtual box growing direction and white cross represents on-
terrain points. 

 
 
3.3 Polygon cue generation and grouping  

Once “intensity” line and “virtual” lines are extracted, a set of 
convex polygons is generated by a recursive intersection of 
both lines. Only the polygons comprising “significant” parts of 
building shape are verified as “building” polygon. The 
boundary representation of polyhedral building shape is 

reconstructed by a collection of “building” polygons. To this 
end, a line cue grouping process to generate polygon cues was 
implemented by a Binary Space Partitioning (BSP) method 
(Fuchs, Kedem & Naylor 1980). Sohn and Dowman (2001) 
exploited the feasibility of BSP method for building extraction, 
where polygon cue generation and grouping process rely on 
straight lines extracted from monocular Ikonos imagery. We 
expanded this method with a different strategy considering the 
contribution of LIDAR data. 
 
The BSP is an efficient method to aid recursive partitioning of a 
region by hyperlines in 2D image space. Figure 5 illustrates this. 
Suppose that we have an initial polygon with rectangle 
geometry, P0, wherein LIDAR points are distributed with on- 
and building-label (see Figure 5 (a)). This polygon is generated 
from the previously mentioned building localization process, by 
which an individual building object is surrounded. For recursive 
partitioning, a set of hyperlines, {hi: i=1, …, N} are prepared, 
which are computed as P0 is intersected respectively by 
integrated line segments {li: i=1, …, N} including intensity and 
virtual line cues. After setting up the hyperline list, all the 
hyperlines are tested to obtain the “best” partition of P0 and a 
hyperline, h0, with the highest partitioning score is selected to 
partition the whole LIDAR domain, P0. For the selection of h0, 
a hyperline candidate, hi, is sequentially selected from the 
hyperline list, by which P0 is divided into the positive and 
negative planes, i.e., P0+ and P0-, reflecting whether the dot 
product of each vertex point of P0 with h0 is negative or positive. 
Then, a normalized cost function, H, computes a partitioning 
score, which can be given according to a bias degree of label 
distribution over P0+ and P0- partitioned by hi; if a more biased 
label distribution is generated, higher score is given. This 
scoring function, H can be described as follows: 
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where, scores for P0+ and P0- can be obtained respectively by H 
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In Equation 2, Non and Nbld are functions to count numbers of 
on-terrain or building-label points belonging to a corresponding 
polygon. Likely to the case of hi, the partitioning scores for 
remaining hyperlines are measured by H. Finally, a hyperline 
with maximum score is selected as h0 to partition P0 and 
geometric information of P0 and h0 are stored as a root node of 
BSP tree for further recursive partitioning (see Figure 5 (b)). 
The same method used for the partition of P0 is applied to P0+ 
and P0- respectively, but to only an “open” polygon, which 
consists of mixed labels, that is on-terrain and building-label 
and the BSP tree is expanded if new child polygons are 
generated by the hyperline list (see Figure 5 (c)). This process 
continues until no leaf node of the BSP tree can be generated.  
 



 

There are two aspects to considering when the “best” partition 
of arbitrary polygon is determined. Firstly, due to low point 
density, a “closed” polygon, Pi, which consists of only a 
building-label, is “earlier” terminated as the final leaf of the 
BSP tree, though it needs to be divided more. Thus, Pi with 
point spacing less than expected, i.e., dth, is also tested to look 
for the “best” partition, even if it is closed. In this case, only 
when either of Pi+ and Pi- is recognized as an “empty” polygon 
that does not include any point, the partitioning score is given 
by an area ratio of “empty” polygon over Pi, otherwise the null 
value is assigned. Thus, the “best” partition of Pi with low point 
spacing less than dth is determined when Pi is partitioned with 
the largest “empty” polygon. Secondly, it is necessary to 
prevent our partitioning method from generating an ignorable 
building part; if any lateral length or area of resulting child 
polygon is less than a certain threshold, i.e., lth and ath 
respectively, its partitioning score is assigned with null value. 
 
 
 
 
 
 
 
 
(a) polygon initialisation         (b) first BSP partitioning  
 
   
 
 
 
 
 
       
(c) recursive polygon partitioning and BSP tree 
 
Fig. 5: BSP tree construction. In the BSP tree, dot circle and 

white circle represent “closed” and “open” polygon 
respectively. 

 
 
Once a BSP tree is generated, final leaves of the BSP tree are 
collected. A heuristic filtering is applied to them so that only 
“building” polygons remain. On the one hand, “open” polygons 
are investigated whether or not they can be recognized as a 
building part; if building-label points exist with a significant 
ratio, i.e., ρth, it is marked as a “building” polygon. On the other 
hand, all the “closed” polygons are recognized as “building” 
parts, but a “closed” polygon is excluded if its member points 
are less than nth and its expected point spacing is less than γ*dth, 
where γ is control parameter. 
 
 

              
       (a) initial partitioning           (b) intermediate partitioning 
 

               
       (c) final BSP partitioning    (d) after heuristic filtering 
 
Figure 6. Illustration of polygon cue generation and grouping 

(white line: selected hyperlines, red cross: building-label 
points). 

 
 

4. RESULTS 

We tested our suggested building extraction technique over a 
sub-site of Greenwich industrial area in London, which size is 
334,125 (m2). As an image source, Ikonos Precision Pan 
sharpened imagery with 1-metre resolution was used (see 
Figure 2 (c)). For the height information, 30,782 LIDAR points 
were acquired over the test area by OPTEC 1020 airborne laser 
scanner, which point density is 0.09 (points/m2), i.e., 
approximately one point per 3.3 x 3.3 (m2) (see Figure 2 (a)). 
 
Using the LIDAR DEM of figure 2 (a), the DTM is 
reconstructed with 15,679 on-terrain points labelled by our 
LIDAR filter (see Figure 2 (b)), in which three parameters are 
used; 1-metre height value is chosen as the “continuity” 
criterion; shape parameters of a sigmoidal function for the 
“terrain polarity” measurement, i.e., α and β are selected as 0.1 
and 45º respectively, which are explained more detail in Sohn 
and Dowman (2002). For building localization, off-terrain 
points are further filtered so that the height of remaining points 
is higher than 4-metre from the reconstructed DTM. When they 
are projected back onto Ikonos image space, normalized NDVIs 
are measured within 5x5 neighbouring mask and vegetated off-
terrain points are removed if any point with the normalized 
NDVI larger than 0.8 is found in the mask. The final building 
localization result is presented in Figure 2 (c), in which 28 
buildings with having building-labels larger than 30 points are 
bounded with rectangle polygons. Note that most residential 
houses failed to be localised due to the low density of LIDAR 
data and nearby trees (see bottom right of Figure 2 (c)).  
 
Figure 9 shows the boundary representation result of polyhedral 
building shapes reconstructed by our building extraction 
technique. In this result, the boundaries of most building shapes 
are properly reconstructed by linear features. Although a large 
amount of erroneous virtual line cues are inferred in each 
building object, our recursive BSP efficiently prunes distracting 
linear cues. As a result, in several building objects, we can 
observe that extended building structures with small size are 
reconstructed by the contribution of “virtual” line cues even 
though those parts are occluded or have very low contrast (see 
Figure 7). Since our recursive part segmentation of polyhedral 
building shape adopts global-to-fine strategy, building 
extraction errors are limited to the reconstruction of less 
“significant” building structures. 
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Figure 7. Building extraction results of (a) small extended and 

(b) occluded building structures. 
 
 

                 
   (a) intrusion of building shape 
 

                                
(b) extrusion of building shape 

 
Figure 8. Building extraction errors caused by low point density 
and building outliers (white line represents building boundaries 
and red dot represents LIDAR points). 
 
However, our technique suffers several difficulties; firstly,  
“significant” parts of building shape are sometimes recognized 
as the “open” polygon and removed by the aforementioned 
heuristic polygon filtering. Thus, the reconstructed building 
shapes are intruded with some extent from real geometry or 
split into two separate objects (see Figure 8 (a)). This problem 
occurs when LIDAR points are located over the building roof 
with extremely low density, by which “empty” polygons are 
generated inside the building outline by recursive BSP. This 
error could be avoided if LIDAR data with higher density is 
used or LIDAR data is evenly distributed so that parameters 
used for the heuristic filter can be regularized. Secondly, we can 
observe the reverse case of the former problem, in which some 
building boundaries are extruded from original features (see 
Figure 8 (b)). This problem is caused by two factors. On the one 
hand, a portion of building-label points is located outside 
buildings due to planimetric errors embedded into Ikonos 
Precision product and LIDAR data used. On the other hand, 
there is a significant deficiency of on-terrain points nearby 
buildings, particularly in our case. In general, when the both 
factors are coherently combined with each other, erroneous 

“closed” polygons are generated, which could be recognized as 
the “building” polygon. Since on-terrain points are used as an 
important evidence to verify the “building” polygon, this 
verification error can be avoided if the on-terrain point is 
located nearby buildings with higher density.  
 
Considering the mentioned problematic situations and the low 
density of LIDAR data used, several parameters used for our 
building extraction technique are carefully selected. The 
definition of an ignorable building part is given by lth and ath, 
i.e., 3 metre and 50 square metre respectively. For the heuristic 
polygon filtering process, an “open” polygon is verified as a 
building part if building-label points are located with ρth larger 
than 0.6.  For removing erroneous “closed” polygons, γ and nth 
are selected as 0.6 and 5 respectively. The expected point 
spacing dth can be simply computed by the size of underlying 
polygon and the average point spacing of entire LIDAR data 
used. Although relatively large number of parameters is 
required in current implementation, these parameters are 
intuitive and their selection can be more stabilized if evenly 
distributed LIDAR data with higher density is used. 
 
 

 
 
Figure 9. Final building extraction result 
 
 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, the reduction of scene complexity in urban area 
was achieved by a hierarchical segmentation of LIDAR DEM 
combined with colour information. For the boundary 
representation of polyhedral building shape, it is assumed 
“significant” parts of building shape can be reconstructed by the 
aggregation of convex polygons. This polygonal part 
segmentation is implemented by Binary Space Partitioning 
(BSP), in which hyperlines are extracted from Ikonos image 
and LIDAR space in coherent collaboration of two different 
data sources. Since our building extraction technique is 
implemented based upon global-to-fine strategy, it can be 
thought to be an efficient method dealing with the level-of-
detail problem and resulted errors become to be smaller. 
However, our technique suffers difficulties when the LIDAR 
data with low density is not evenly distributed. The selection of 
relatively large number of parameters is not automated and 
subjective to properties of LIDAR data used. Therefore, future 
research will be directed towards stabilizing the selection of 
those parameters with higher density LIDAR data and it will be 
also useful to extend our technique to 3D reconstruction of roof 



 

structure, in which the polygonal part segmentation of a 
building roof relies on planar surface attribute. 
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