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ABSTRACT: 
 
This paper focuses on the potential of using airborne laser scanning technology for transportation applications, especially for 
identifying moving objects on roads. An adaptive thresholding algorithm is used to segment the LiDAR point cloud, which is 
followed by a selection process to extract the vehicles. The LiDAR data are capable of measuring the vertical profile of a vehicle, 
and hence provide a base for distinguishing major vehicle types. Various techniques, such as the use of statistical, neural, and rule-
based classifiers, were used to recognize the vehicle classes. The classification is based on features derived from a principal 
component transformation. Thereafter the extracted vehicles were classified into main categories, such as passenger cars, multi-
purpose vehicles, and trucks. The feasibility of the developed method to effectively extract vehicles from LiDAR data has been 
demonstrated on several datasets. The proposed technique makes LiDAR suitable for new transportation applications, such as 
collecting data for traffic flow monitoring and management, including data on the vehicle count, traffic density, and velocity. 
 

 
1. INTRODUCTION 

Airborne laser mapping is an emerging technology in the 
field of remote sensing that is capable of rapidly generating 
high-density, geo-referenced digital elevation data with an 
accuracy equivalent to traditional land surveys but 
significantly faster than traditional airborne surveys (Flood, 
1999). Despite the initial high price, these systems have made 
remarkable market penetration, and recent technical and 
methodological advancements have further improved the 
capabilities of this remote sensing technology (Wehr and 
Lohr, 1999). In addition to the conventional DSM/DEM 
products, the latest high-performance LiDAR systems can 
deliver very dense and accurate point clouds and thus provide 
data for more sophisticated applications. At the APSRS 2003 
Convention, Optech introduced the ALTM 30/70, a 70 kHz 
system and soon after that, LHS announced the 58 kHz 
version of its system, which provides excellent support for 
corridor mapping. These developments make LiDAR 
technology capable of acquiring transportation application-
specific information beyond conventional mapping and thus 
supporting tasks such as extracting moving objects. In this 
paper we investigate the potential of using airborne laser 
scanning technology for traffic monitoring and other 
transportation applications. 
 
Road transportation systems have undergone considerable 
increases in complexity and at the same time traffic 
congestion has continued to increase. In particular, surface 
vehicle ownership and the use of vehicles are growing at 
rates much higher than the rate at which roads and other 
infrastructures are being expanded. Transportation authorities 
are increasingly turning to existing and new technologies to 
acquire timely spatial information of traffic flow to preserve 
mobility, improve road safety, and minimize congestion, 
pollution, and environmental impact (Zhao 1997). Besides 
the widely used conventional traffic data collection 
techniques, such as detection loops, roadside beacons, travel 
probes and driver input, the state-of-the-art remote sensing 
technologies, such as LiDAR and high-resolution digital 
cameras can provide traffic flow data over large areas without 

ground-based sensors. It is expected that the use of modern 
airborne sensors supported by state-of-the-art georeferencing 
and image processing technologies will enable fast, reliable, 
and accurate data capture for traffic flow information 
retrieval with high spatial and temporal resolution. In 
particular, the following data will be supported: vehicle 
count/type, vehicle velocity and travel time estimation, 
origin-destination flows, highway densities (passenger car 
per unit distance per lane) and exit flow monitoring, 
intersection turning volumes, detection of congested/incident 
areas in real-time to support traffic redirection decision-
making, platoon dispersion/condensation monitoring (which 
can be effectively accomplished only by remote sensing 
methods), and incident detection and response (Toth et.al., 
2003). 
 

 
 

Figure 1. The LiDAR dataset captured over a freeway. 
 
This paper discusses the use of LiDAR data for extracting 
moving vehicles over the transportation corridors and 
grouping them into broad classes. The method includes a 
filtering process of identifying vehicles, the selection of a 
parameterization to describe the LiDAR point cloud of 
vehicles, the optimization of the parameter representation, 
and the classification process. Using three datasets obtained 
from typical LiDAR surveys, three classification techniques 
have been tested to assess the performance of the vehicle 
grouping. Figure 1 shows a typical road segment with various 
vehicles clearly identifiable from the LiDAR point cloud. 



 

2. VEHICLE EXTRACTION, MODELING AND 
REPRESENTATION  

To support the vehicle recognition process, vehicles must be 
extracted from the LiDAR point cloud and their geometry 
should be adequately modeled to provide a good parameter 
space for the classifier. In order to extract the vehicles from 
LiDAR data a simple thresholding method can be applied. 
Since normally the road surface is flat, one threshold value 
may easily separate the LiDAR points reflected from a 
vehicle from the points reflected from the road surface. 
However, for longer vehicles, such as an 18-wheeler, 
assumption of the road flatness and horizontality may not 
hold, especially for higher-grade levels (steep roads). 
Therefore, an adaptive thresholding technique should be used, 
which adjusts the threshold level as the surface around the 
vehicle is changing. The applied method, similar to the 
techniques used in image segmentation is based on the 
dataset histograms, here created by using the height values 
instead of the intensities (Pitas, 2000). The problem of the 
steep slopes can be bypassed using windows moving over the 
dataset, hence taking limited amount of data into 
consideration at any thresholding step. Figure 2 shows the 
processing steps of vehicle extraction from the LiDAR point 
cloud.  

 
 

Figure 2. Design architecture and data processing flow. 
 
In order to distinguish major vehicle types, characteristic 
parameters have to be chosen; here we used a six-parameter 
representation that includes the size of the vehicle footprint 
and then four vertical parameters (average height values 
computed over the four equally sized regions) as shown in 
Figure 3. 
 

 
 

Figure 3. Parameterization of LiDAR points  
representing a vehicle. 

 
To support the vehicle classification study in using LIDAR 
data for traffic flow extraction, Woolpert LLP from Dayton, 

OH provided a dataset, obtained from flights done for regular 
mapping purposes. The point density was 1.5 point/m2, 
which was certainly adequate for topographic mapping and 
could be considered at best minimal for vehicle identification. 
The LiDAR data covered a freeway section of State Route 35 
(East of Dayton), packed with vehicles, and was used as a 
training dataset for developing the classifiers. 72 vehicles 
were chosen and processed in an interactive way, the regions 
containing vehicles were selected by an operator and the 
vehicles were automatically extracted by the thresholding 
method presented earlier. All the vehicles were parameterized 
and then categorized into three main groups: passenger cars, 
MPVs (multi-purpose vehicles such as SUVs, minivans, light 
trucks), and trucks/eighteen-wheelers. 
 
An important aspect of the input data selected for testing is 
the relative velocity between the airborne data acquisition 
platform and the vehicles to be observed. The aircraft speed 
for the Dayton survey was known from the GPS/INS 
navigation solution and the average speed of the LiDAR 
sensor was about 200 km/h during the survey. This roughly 
translates into the relative velocity range of 100-300 km/h 
between the data acquisition platform and the moving objects 
observed. Figure 1 clearly shows the impact of the relative 
speed as the vehicles traveling at faster relative speed 
(opposite direction) have smaller footprints while the smaller 
relative velocity (airplane and vehicles are moving in the 
same direction) results in elongated vehicle footprints. The 
extreme of zero relative velocity, such as the vehicle moving 
with same ground speed as the aircraft, the LiDAR-sensed 
vehicle size would be infinite; the vehicle would become 
practically not detectable. In this paper, the estimation of the 
vehicle velocity is not considered, some aspects of this 
process are discussed in (Toth et.al., 2003).  
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Figure 4: The eigenvalues and information contents of the 

training data set, which consisted of 72 vehicles. 
 
To reduce the dimensionality of the parameter space, 
Principal Component Analysis (PCA) was then performed. 
PCA is an effective tool for handling data 
representation/classification problems where there is a 
significant correlation among the parameters describing the 
object patterns. By training the datasets, the correlation can 

Input: LiDAR points 

Height histogram 

Histogram smoothing 

Threshold setting 

Output: vehicles, roads, other 



 

be determined and a reduced parameter set can be defined 
that can both represent the information in a more compact 
way and can support an efficient classification in the reduced 
feature space. The clear advantage of the method is that it 
does not require any physical modeling of the data; of course, 
the selection of the input parameters has some importance. 
Provided that a rich set of input parameters is defined, 
however, the method will effectively identify the redundancy 
and thus usually results in a quite reduced parameter 
representation. In our investigations the 72 vehicles provided 
a statistically meaningful dataset for the PCA process. The 
eigenvalues computed from the covariance matrix and 
ordered monotonically are shown in Figure 4. 
 
In analyzing the results, it is quite striking to see that more 
than 98% percent of the original information content is 
preserved if only the two largest eigenvalue components are 
used for data representation. To assess the classification 
performance, for which high information contents do not 
necessarily give guarantees, the 72 vehicles converted into 
the two-dimensional feature space as plotted in Figure 5. 
Cars are marked with ○, MPVs with +, and trucks with *, 
respectively; vehicle direction with respect to sensor motion 
is coded in red and blue. Figure 6 shows the results if only 
the height parameters (4) were used as input in the PCA. 
 

 
Figure 5. Vehicle distribution in the two-dimensional feature 

space (6-parameter input data-based PCA). 
 
 

 
Figure 6. Vehicle distribution in the two-dimensional  

feature space if only height parameters (4) were  
used in the PCA process. 

Comparing Figures 5 and 6, it is apparent that vehicle 
categories can be effectively separated using solely 
vehicle height parameters. In fact, the vertical profile of 
the vehicles itself seems to be sufficient for the vehicle 
group classification. Obviously, not using the length 
information means that the vehicle travel directions 
become indistinguishable. Why the width has no 
significant impact is probably explained by two facts. 
First the variations between the three vehicle groups are 
rather small – the difference between the mean vehicle 
widths is about 0.5 m. Second, the footprint of the 
LiDAR, the area that one pulse will reach is about 25 
cm (diameter of the ellipse). Given the spacing between 
the LiDAR pulses, which is at least 0.5 m, it is apparent 
that the measuring accuracy of the vehicle width is 
rather poor and consequently the information content of 
this parameter is rather insignificant. The vehicle travel 
direction, however, can be recovered from the 6-
parameter model. 
 

3. VEHICLE RECOGNITION  

For vehicle classification, three methods have been 
considered. The main goal here is to classify the vehicles into 
the given categories: passenger cars (P), multi-purpose 
vehicles (MPV) and trucks (T). Each category has two 
subclasses (along and against) considering the traffic 
direction relative to the flight direction. Therefore, the 
recognition process is expected to separate the vehicles into 
six groups, identified as follows: 
 

ID Category 
1 P along 
2 P against 
3 MPV along 
4 MPV against 
5 T along 
6 T against 

 
The recognition process, including the derivation of the 
classifier’s parameters, was performed by using the Ohio data 
set (72 vehicles) for all three different classification methods.  
 
Rule-based classifier 
 
The first method was a rule-based classifier, which contains 
decision rules derived from the PCA transformed features. As 
depicted in Figure 7, a clear separation, in other words, 
clustering of samples with identical labels can be easily made 
between the groups by using straight lines. These lines are of 
course specified by two variables, which are determined by 
simple calculations. 
 
For example, Category 1 (passenger cars traveling along the 
flight direction) is bounded by Line A and C, furthermore by 
the coordinate axis x. Line A can be defined by (1): 

 
0.5 3 3

15A Ay a x b x−= + = +  (1) 

where x and y are the two first principal components. 
Similarly Line C is defined by (2): 

4.5x =   (2) 
 



 

The rule for the category is thereafter: 
2.5( 3) ( 4.5) ( 0)
15

y x AND x AND y< − + > >     (1) 
Category 3 (MPV traveling along the flight direction) 
represents a more complex cluster boundary, which can be 
described as: 
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where the indices show which parameters correspond to 
which lines. 
 

 
 
Figure 7. Segmentation of the two-dimensional feature space 

of the training vehicles 
 
The determination of all parameters and subsequent creating 
of all the rules is a rather straightforward task. However, the 
introduction of new observations (new features) usually 
requires the refinement of the rules. Applying the rules to an 
unknown feature vector is obviously simple and fast. 
 
Minimum-distance method 
 
The second investigated classifier was a fundamental 
statistical technique: the minimum distance method. This 
classifier is based on a class description involving the class 
centers, which are calculated by averaging feature 
components of each class. An unknown pattern is classified 
by computing the distances between the pattern and all class 
centers and the smallest distance determines in which class 
the pattern will be classified. The distance calculation based 
on the Euclidean measure in our two-dimensional case is 
(Duda, 2001): 

2 2( ) ( )j j jD x x y y= − + −  (5) 

where the class center of class j  is given by jx and jy . The 
classification is based on the evaluation of (6): 
 

arg min( ) 1, 2,...6j
j

C D j= =  (6) 

This method is simple and the algorithm executes fast. As 
new vehicles are added to the training set, the class centers 
have to be recalculated but the decision formula remains 
unchanged. Class centers and boundaries, which form a 
Voronoi tessellation, are shown in Fig. 8. 
 

 
 
Figure 8. Segmentation of the two-dimensional feature space 

of training vehicles by the minimum-distance method 
(Voronoi tessellation) 

 
Artificial neural network classifier 
 
The third method in the vehicle recognition investigation was 
based on an artificial neural network classifier. The feed-
forward (back-propagation) neural networks have to be 
trained by the features. As it is commonly agreed (Brause, 
1995; Rojas, 1993), most practical works require 3-layer 
networks; hence such a structure was implemented in our 
tests. In order to get the simplest network, the following 
strategy was applied: a network with a small number of 
neurons was created and then trained. If the network’s 
recognition accuracy reached the required value, the design 
phase was stopped, otherwise a neuron was added. The 
additional neurons were given firstly to the second layer, then 
to the first one. This successive method ensures the minimal 
balanced structure of an acceptable network. All the designed 
networks had a logistic sigmoid transfer function on the first 
and second layers, and a linear transfer function on the third 
(output) layer. This structure is capable of directly producing 
the required class identifiers. The training method was the 
Levenberg-Marquard algorithm (Demuth, 1998), the 
maximal number of training steps (epochs) was 70, and the 
required error goal value was 0.1. The network error was 
calculated by the mean square error (MSE) method. At the 
end, the output of the neural network was rounded to the 
nearest integer. 
 
In our experiments, the above strategy was applied with an 
initial network structure of 2-2-1. The network addition was 
stopped at 6-6-1, at which point eight networks were found 
which had smaller recognition error than 10 (13.8 %). From 
that network set the simplest was chosen, which had a 
structure of 3-4-1. The introduction of additional vehicles in 
neural networks means the repetition of the entire training 
procedure. The use of the trained network (network 
simulation), however, is relatively fast. 
 

4. RESULTS 

The three developed vehicle recognition techniques were 
tested on the training data set of Ohio (1), on the data set 
containing vehicles from Ohio and Michigan, (2) and on 
combined dataset, including the Ontario data (3). The first 
test (in-sample test) was only an internal check of the 
algorithms. Table 1 shows a performance comparison of the 
three techniques. 



 

Data set  
(total number of vehicles) 

Rule-based Minimum distance Neural network 

Ohio (72 vehicles) 0 (0%) 8 (11.1%) 2 (2.8%) 
Ohio + Michigan (87) 2 (2.3%) 12 (13.8%) 8 (9.2%) 
Ohio + Michigan + Ontario (102) 2 (2%) 17 (16.7%) 16 (15.7%) 

 
Table 1. The comparison of the three recognition techniques; number of misclassification errors (percentage) 

 
Data set 

(total number of vehicles) 
Rule-based Minimum distance Neural network 

Ohio (72 vehicles) 0 (0%) 4 (5.6%) 2 (2.8%) 
Ohio + Michigan (87) 2 (2.3%) 8 (9.2%) 8 (9.2%) 
Ohio + Michigan + Ontario (102) 2 (2.3%) 10 (9.8%) 14 (13.7%) 

 

 
Table 2. The misclassification errors of the methods without considering the vehicle travel directions 

 
 
The rule-based method has perfectly identified the features, 
while the other two methods have small recognition errors. In 
all methods, the most frequent misclassification error type 
was the mismatch of the Ps and the MPVs in the along 
direction, since passenger cars can have shape and length 
very similar to MPVs. Ignoring the relative traveling 
direction, in other words classifying into three classes instead 
of six, the results are somewhat different as shown in Table 2. 
 
The tests with the combined Ohio, Michigan and Ontario 
data show strong out-of-sample performance, which is a good 
indication of the applicability of the proposed vehicle 
recognition method. Obviously, more tests with a variety of 
data are needed to confirm the ultimate potential of using 
LiDAR data as a source for traffic flow estimates.  
 
 

5. CONCLUSIONS 

Considering the fact that all the three classification methods 
used have produced rather good results, it is fair to say that 
LiDAR data can be used to support traffic flow applications. 
All three methods were able to recognize the vehicle 
categories with accuracy better than 80 %. This high 
recognition rate proves that a classifier designed and 
parameterized by an adequate training dataset can be 
successfully applied on other, unknown data sets. 
Furthermore, the results are even more encouraging if the 
relatively modest LiDAR point density is factored in (1.5 
point/m2). The state-of-the-art LiDAR systems can easily 
provide a 3-5 times denser point cloud and consequently 
better classification performance can be expected.  
 
The developed method has demonstrated that LiDAR data 
contain valuable information to support vehicle extraction, 
including vehicle grouping and localizations. The 
classification performance showed strong evidence that the 
major vehicle categories can be efficiently separated. With 
the anticipated improvements in LiDAR technology, such as 
denser point cloud and smaller pulse footprint, the 
classification efficiency is expected to grow further. The 
price of LiDAR, however, is prohibitive at this point to 
support real-life applications. Nevertheless, collecting data 
over transportation corridors during regular surveys already 
offers a no-cost opportunity to obtain important traffic data. 
In addition, the advantage of the moving platform is that it 
can be freely deployed more or less any time and anywhere. 
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