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ABSTRACT 
 
Lidar data provide accurate measurements of forest canopy structure in the vertical plane however current lidar sensors have limited 
coverage in the horizontal plane.  Landsat data provide extensive coverage of generalized forest structural classes in the horizontal 
plane but are relatively insensitive to variation in forest canopy height.  It would therefore be desirable to integrate lidar and Landsat 
data to improve the measurement, mapping, and monitoring of forest structural attributes.  We tested five aspatial and spatial 
methods for predicting canopy height, as measured by an airborne lidar system (Aeroscan), from Landsat ETM+ data: regression, 
kriging, cokriging, and kriging and cokriging of regression residuals.  Our 200 km2 study area in western Oregon encompassed Oregon 
State University’s McDonald-Dunn Research Forest, which is broadly representative of the age and structural classes common in the 
region.  We sampled our continuous lidar coverage in eight systematic patterns to determine which lidar sampling strategy would 
optimize lidar-Landsat integration: transects sampled at 2000, 1000, 500 and 250 m frequencies, and points sampled at these same 
spatial frequencies.  The aspatial regression model results, regardless of sampling strategy, preserved actual vegetation pattern, but 
underestimated taller canopies and overestimated shorter canopies.  The spatial models, kriging and cokriging, produced less biased 
results than regression but poorly reproduced vegetation pattern.  The integrated models that kriged or cokriged regression residuals 
were preferable to either the aspatial or spatial models alone, because they preserved the vegetation pattern like regression yet 
improved estimation accuracies above those predicted from the regression models alone.  We concluded that in our study landscape, 
an integrated modeling strategy is most suitable for estimating and mapping canopy height at locations unsampled by lidar, and that a 
250 m point sampling strategy would be more useful for lidar-Landsat ETM+ integration than sparser transect sampling strategies 
planned for satellite missions. 
 
 

1.  INTRODUCTION 
 
Lidar data provide detailed information on forest canopy 
structure in the vertical plane but over a limited spatial extent 
(Lefsky et al., in press).  Landsat data provide useful 
structural information in the horizontal plane (Cohen and 
Spies, 1992) but are relatively insensitive to canopy height.  

Lidar-Landsat ETM+ integration is therefore a very logical 
goal to pursue.  No remote sensing instrument is suited for all 
applications, and there have been several calls for improving 
the applicability of remotely sensed data through multisensor 
integration.  Most multisensor integration studies published 
up to this point have involved Landsat imagery (e.g. Oleson 



  

et al., 1995; Asner et al., 1997) but none have integrated 
Landsat imagery with lidar data. 
 
Lidar-Landsat ETM+ integration has immediate relevance due 
to the anticipated launches of the Ice, Cloud, and Land 
Elevation Satellite (ICESat) and Vegetation Canopy Lidar 
(VCL) satellite missions.  The global sampling of the earth’s 
forests, as VCL should provide, will be a huge boon for forest 
resource assessments.  For example, the VCL mission has 
potential to greatly narrow the uncertainty surrounding 
estimates of global C pools.  Discontinuous lidar data will 
need to be integrated with continuous optical imagery to 
produce comprehensive maps that have practical value to 
forest ecologists and forest resource managers (Lefsky et al., 
1999c).  Given the continued demand for Landsat imagery, 
the growing supply of imagery from Landsat 7, and the 
recent decommissioning of Landsats 4 and 5 (and thus any 
further TM or MSS data), ETM+ imagery from Landsat 7 is 
a logical choice for integrating with lidar sample data. 
 
In this study, our first objective was to estimate canopy 
height at locations unsampled by lidar, based on the 
statistical and geostatistical relationships between the lidar 
and Landsat ETM+ data at the lidar sample locations.  We 
used the most basic data from lidar (maximum canopy height) 
and Landsat ETM+ (raw band values) and tested widely 
used, straightforward empirical estimation methods: ordinary 
least squares regression, ordinary kriging, and ordinary 
cokriging. 
 
Prior research has shown that landscape pattern varies 
principally as a function of the areal size of individual stands 
in the heavily managed forests of western Oregon, or at a 
typical scale of 250-500 m (Cohen et al., 1990; Milne and 
Cohen, 1999).  Thus, we hypothesized that VCL may 
undersample the landscape relative to the spatial scale at 
which most canopy variation occurs in western Oregon 
forests, and in perhaps most other forested regions.  Our 
second (yet equally important) objective was to determine 
what spatial sampling design would optimize the integration 
of lidar and Landsat ETM+ data for accurate mapping. 
 
 

2.  BACKGROUND 
 
2.1 Lidar 
 
Lidar (LIght Detection and Ranging) is an active remote 
sensing technology like radar but operating in the visible or 
near-infrared region of the electromagnetic spectrum.  Lidar at 
its most basic level is a laser altimeter that determines the 
distance from the instrument to the physical surface by 
measuring the time elapsed between a laser pulse emission 
and its reflected return signal.  This time interval multiplied 
by the speed of light measures twice the distance to the 
target; dividing this measurement by two can thus provide a 
measure of surface elevation (Bachman, 1979).  Processing of 
the return signal may identify multiple pulses and returns.  
As a result, trees, buildings, and other objects are apparent in 
the lidar signal, permitting accurate calculation of their heights 
(Nelson et al., 1984).  Studies using coincident field data have 
indicated that lidar data can provide non-asymptotic 

estimates of structural attributes such as basal area, biomass, 
stand volume (Nilsson, 1996; Nelson et al., 1997; Lefsky et 
al., 1999a,b; Means et al., 1999, 2000), and leaf area index 
(LAI) (Lefsky et al., 1999b), even in high-biomass forests.  
Lidar allows extraordinary differentiation between young, 
mature, and old-growth stand structure that is currently 
unrivaled by any other remote sensing technology (Lefsky et 
al., 1999b; Weishampel et al., 2000).   
 
Lidar instruments can be divided into two general categories: 
discrete return and waveform sampling (Lefsky et al., in 
press).  They are distinguished in part by the size of the laser 
illumination area, or footprint, which typically is smaller 
with discrete-return systems (0.25-1 m) than with waveform-
sampling systems (10-100 m).  Waveform-sampling systems 
compensate for their coarser horizontal resolution with finer 
vertical resolution, providing sub-meter vertical profiles, 
while discrete-return systems record only 1-5 returns per 
laser footprint.  Discrete-return systems are more suited for 
supplying the demand for accurate, high-resolution 
topographic maps and digital terrain models, and are therefore 
becoming widely available in the commercial sector (Lefsky 
et al., in press).  The most advanced vegetation application of 
waveform-sampling lidar data to date has been the 
development of a canopy volume profile in high-biomass 
forests, which provides a more direct measure of physical 
canopy structure than any other remote sensing technology 
so far (Lefsky et al., 1999b). 
 
VCL is a spaceborne, waveform-sampling lidar system that 
will inventory canopy height and structure between ±68° 
latitude for an estimated 2 years.  VCL footprints will be 
approximately 25 m in diameter and arrayed in single file 
along transects.  Originally, VCL was designed to acquire 
along 3 parallel transects spaced at 2 km intervals.  More 
recently, this spacing was broadened to 4 km 
(http://essp.gsfc.nasa.gov/vcl).  The ground track of the VCL 
satellite will be randomly placed on the Earth’s surface; the 
juxtaposition of the ascending and descending orbital paths 
will form a web of transects sampling the Earth’s surface 
(Dubayah et al., 1997). 
 
ICESat is a spaceborne, waveform-sampling lidar system that 
will measure and monitor ice-sheet topography as well as 
cloud and atmospheric properties.  Like VCL, it will acquire 
data in the near-infrared region at 1064 nm, but ICESat will 
also acquire data in the visible green region at 532 nm 
(http://ltpwww.gsfc.nasa.gov/eib/glas.html).  It has a 70 m 
footprint that will likely prove too large for measuring tree 
heights in areas with steep slopes.  However the 175 m 
spacing of the lidar point samples could be better for 
integrating with passive optical imagery. 
 
2.2 Landsat ETM+ 
 
Landsat imagery is the most common satellite data source 
used in terrestrial ecology.  This is in large part due to its 
widespread availability and unrivaled length of record (since 
1972), but also because the grain, extent, and multispectral 
features make Landsat suitable for a variety of environmental 
applications at landscape-regional scales.  Landsat spectral 
data are typically related to vegetation structural attributes 



  

via spectral vegetation indices (SVIs).  Ecologically relevant 
structural attributes such as LAI have been estimated from 
SVIs of croplands (e.g. Wiegand et al., 1979; Asrar et al., 
1984), grasslands (e.g. Friedl et al., 1994), shrublands (e.g. 
Law and Waring, 1994), and forests (e.g. Chen and Cihlar, 
1996; Fassnacht et al., 1997; Turner et al. 1999).  Sensitivity 
of SVIs to variation in LAI or biomass generally declines, 
however, as foliar densities increase between ecosystems (e.g. 
Turner et al., 1999).  The greater structural complexity of 
forests requires, not surprisingly, more complex image 
processing techniques.  For instance, Cohen and Spies (1992) 
used all 6 Landsat radiance bands, rather than just the red and 
near-infrared bands as with most SVIs.  Other notable yet 
more complicated approaches to enhancing the extraction of 
canopy structure information from Landsat imagery include 
using multi-temporal TM data to capture variable 
illumination conditions (Lefsky et al., 2001) and spectral 
mixture analysis to quantify canopy shadows (e.g. Adams et 
al., 1995; Peddle et al., 1999).  The new ETM+ instrument 
on board Landsat 7 features enhanced radiometric resolution 
over its TM predecessor, which should aid all of the 
empirical methods just described.  Yet there are fundamental 
limitations to the utility of passive optical sensors for 
characterizing vertical forest canopy structure, which will 
probably make them perpetually inferior to lidar for this task 
(Lefsky et al., 2001). 
 
 
2.3 Estimation methods 
 
All of the estimation methods we employed are empirical and 
were chosen for their broad use and general applicability: 
ordinary least squares regression (OLS), ordinary kriging 
(OK), and ordinary cokriging (OCK).  The literature 
documents many variations on these aspatial (e.g. Curran and 
Hay, 1986) and spatial (e.g. Journal and Rossi, 1989; Stein 
and Corsten, 1991; Pan et al., 1993; Knotters et al., 1995) 
estimation methods.  We deemed it less useful to conduct an 
exhaustive study of them all than to concentrate on the three 
methods just named because they broadly represent the basic 
empirical estimation techniques. 
 
 

3.  METHODS 
 
3.1 Study Area 
 
The 200 km2 study area features Oregon State University’s 
McDonald-Dunn Research Forest in the eastern foothills of 
the Coast Range in western Oregon.  The area has elevations 
ranging from 58-650 m.  Most of the area is coniferous forest 
dominated by Pseudotsuga menziesii and co-dominated by 
Tsuga heterophylla, but hardwood stands featuring Acer 
macrophyllum and Quercus garryana also are common.  
Stands span the full range of successional stages: young, 
intermediate, mature, and old-growth, and three management 
themes: even-aged, two-storied, and uneven-aged 
(http://www.cof.orst.edu/resfor/mcdonald/purpose.sht). 
 
3.2 Image Processing 
 

Small-footprint lidar data were acquired from an airborne 
platform (Aeroscan, Spencer B. Gross, Inc., Portland, OR) in 
January 2000.  The Aeroscan instrument records 5 vertical 
returns within small footprints having an average diameter of 
60 cm and geolocated in real time using an on-board, 
differential global positioning system to an accuracy of 75 cm 
(horizontal) and 30 cm (vertical).  North-south paths were 
flown to provide continuous lidar coverage of the entire area.  
Maximum canopy height values were calculated for each 
footprint as the difference between the first (canopy top) and 
last (ground) returns using waveform processing algorithms 
developed in IDL (Research Systems Inc., Boulder, CO) by 
coauthor Lefsky.  Maximum height values in each footprint 
were then aggregated into 25 x 25 m bins to produce a 
maximum canopy height image of 25 m spatial resolution.  
Every pixel was assigned a maximum canopy height value 
from a population of 10-764 lidar footprints, with a median 
of 26 footprints per pixel. 
 
A Landsat ETM+ image (USGS-EROS Data Center, Sioux 
Falls, SD) acquired on 7 September 1999 was coregistered to 
a 1988 base image using 90 tie points selected through an 
automated spatial covariance procedure (Kennedy and 
Cohen, in review).  Georegistration was performed in Imagine 
(ERDAS, Cambridge, U.K.) using a first-order polynomial 
function with nearest neighbor radiometric resampling, with a 
root mean square error of  ±14.3 m. 
 
3.3 Sampling strategies 
 
Possession of an actual height image across a large area 
allowed us to sample across a range of spatial frequencies.  
We simulated not only the original VCL sampling interval 
(2000 m) but also doubled the sampling frequency three 
times to 1000, 500 and 250 m; we sampled not only along 
transects (as VCL) but also in point patterns (as ICESat) at 
these same 4 spatial frequencies, or the intersections of the 
mentioned transects.  The total of 8 height datasets were 
sampled in ERDAS Imagine. 
 
3.4 Estimation methods 
 
The histogram of the maximum canopy height data exhibited 
a strong positive skew.  We therefore normalized each of the 
8 height datasets with a square root transformation 
(SQRTHT) prior to applying any of the estimation methods; 
afterwards, all estimated SQRTHT values were 
backtransformed (squared) before comparing to measured 
height values. 
 
3.4.1 Aspatial.  The SQRTHT sample data were regressed 
on the raw ETM+ bands 1-7, as well as the Universal 
Transverse Mercator (UTM) X and Y locations, using 
stepwise multiple linear regression.  Variables were assigned 
only if they added significantly to the model (α = 0.05). 
 
3.4.2 Spatial.  The SQRTHT sample data were normal-score 
transformed prior to modeling.  This non-linear, ranked 
transformation normalizes the data to produce a standard 
Gaussian cumulative distribution function with mean equal to 
zero and variance equal to one (Deutsch and Journel, 1998).  
After modeling, the estimates were backtransformed to the 



  

original SQRTHT data distribution; the estimates at the 
sample locations were an exact reproduction of the original 
SQRTHT sample data. 
 
Ordinary kriging and ordinary cokriging operations were 
performed using algorithms in GSLIB (Statios, San Francisco, 
CA).  We modeled the sample semivariograms by nesting 
nugget estimates with two exponential models.  Only a model 
semivariogram for the primary variable was needed for 
ordinary kriging.  For cokriging, a model semivariogram was 
also required for the secondary variable, along with a cross 
semivariogram modeling the spatial cross correlation between 
the primary and secondary variables.  The ETM+ 
panchromatic band was the logical choice to serve as a 
secondary variable for cokriging, since this band has the 
highest resolution (15 m) among the ETM+ bands and 
therefore the highest spatial information content.  The 
secondary data were also normal-score transformed before 
modeling.  We were careful to observe the positive 
definiteness constraint on the linear model of 
coregionalization while developing the 3 semivariogram 
models required for each cokriging operation (Isaaks and 
Srivastava, 1989; Goovaerts, 1997). 
 
3.4.3 Integrated.   Residuals from the OLS regression models 
were exported from IDL as ASCII files and imported into 
GSLIB for kriging/cokriging.  The same rules and procedures 
were followed for modeling the residuals as for modeling the 
SQRTHT data.  
 
3.5 Validation.  A comprehensive image of lidar-measured 
height values allowed exhaustive validation of the 5 
estimation methods and 8 sampling strategies tested.  To 
ensure comparability, the same validation points were used 
to evaluate all estimation methods and sampling strategies.  
Two sets of validation points were systematically selected to 
compare measured and estimated height values using 
Pearson’s correlation statistic.  One set of validation points 
was designed to assess the height estimates for the study area 
as a whole, with no regard to distance from sample locations; 
the other set was designed to assess the height estimates as a 
function of distance from sample locations.   
 
Histograms, scatterplots, and graphs of measured versus 
estimated height values were graphically compared, and 
correlation coefficients were calculated in IDL.  Estimated 
height and estimation error images were mapped in Arc/Info 
GRID (ESRI, Redlands, CA).  Moran’s Coefficient (I) 
calculations for spatial autocorrelation in the model residuals 
were performed using S-PLUS (Insightful, Seattle, WA) 
functions developed by Dr. Robin Reich (Colorado State 
University, Fort Collins, CO).  The significance test to 
evaluate each I statistic assumed normality in 700 residual 
values sampled from the population of errors.  The theory 
underlying Moran’s I statistic can be pursued more 
thoroughly in Moran (1948) and Cliff and Ord (1981).  
 
 

4.  RESULTS 
 

4.1 Empirical models 
 
Separate stepwise multiple regression models were developed 
for the 8 sampling strategies tested.  In every case, ETM+ 
band 7 was the first variable selected.  All 9 independent 
variables contributed significantly, and were therefore 
included, in the 4 transect cases.  The number of variables 
included in the point models decreased as sample data volume 
decreased, with only one variable selected in the lower 
extreme case (2000 m point strategy).   
 
For the spatial and integrated models, unique semivariogram 
models of the height and height residual datasets were 
generated for all 8 of the sampling strategies tested.  The 
range and sill parameters, and the shape of the 
semivariograms, were very similar among the 8 height 
datasets, and among the 8 height residual datasets.  Nugget 
variance increased in the cases of the relatively sparse 1000 
and 2000 m point samples.  For cokriging, each of the 8 
sampling strategies also required unique model 
semivariograms of the secondary data semivariograms and the 
respective cross semivariograms.  As with the primary 
datasets, the range and sill parameters and semivariogram 
shapes were consistent amongst all 8 sample datasets, and 
nugget variance was again greater in the 1000 and 2000 m 
point samples.  There was less spatial autocorrelation to 
exploit in the residual data than in the SQRTHT data.  
Similarly, the spatial cross correlation between the primary 
and secondary data was considerable with regard to the 
SQRTHT datasets, but relatively low with regard to the 
residual datasets.  Very tight model fits were achieved for all 
of the primary, secondary, and cross semivariograms by 
nesting a nugget value and two exponential models. 
 
4.2 Estimation accuracy 
 
4.2.1  Global.  Histograms of the full populations of 
estimated height values were used to evaluate global accuracy.  
Deviations in the estimated height histograms away from the 
measured height histograms were a good indicator of 
estimation biases at various heights.  These biases were most 
pronounced in all of the regression results, and in the 
kriging/cokriging results based on sparse point samples (1000 
or 2000 m).  Biases in the estimates from the integrated 
methods were relatively minor, and decreased as sampling 
frequency increased.  Correlations between measured and 
estimated heights were always better using the integrated 
models than using either the regression or spatial models 
alone.  Cokriging produced slightly higher correlations than 
kriging.  Correlations also were higher with the transect 
samples than with the point samples at each spatial sampling 
frequency. 
 
Scatterplots of measured vs. estimated height values were 
also generated to compare the 5 models and 8 sampling 
strategies tested.  Deviations in the slope of the fitted 
trendlines away from the 1:1 line helped show that the 
regression models suffered the most from underestimating the 
taller heights while overestimating the shorter heights.  These 
deviations corresponded closely with the deviations in the 
estimated height histograms from the measured height 
histogram.  Furthermore, correlations between measured and 



  

estimated height values in the scatterplots agreed well with 
the correlations calculated from the global height estimates.  It 
is thus safe to conclude that the 700 points in these 
scatterplots were highly representative of the full population 
of height estimates, and their errors. 
 
4.2.2 Local.  Local estimation accuracy was also assessed 
according to Pearson’s correlation statistic.  Accuracy 
decreased as the distance from sample locations increased.  
The spatial models were more accurate than the regression 
models below distances of approximately 200 m from the 
sample locations.  The integrated models preserved the 
accuracy of the regression estimates beyond this distance to 
the nearest sample.  A sampling interval of 250 m ensured 
that all estimates were <180 m from the nearest sample, 
which improved estimation accuracies of the spatial and 
integrated models above those of regression, at all locations. 
 
4.3 Mapping.  Regression-based maps were virtually 
indistinguishable regardless of the sampling strategy or 
number of variables included.  In dramatic contrast, the 
sampling strategy caused obvious artifacts in the kriging or 
cokriging maps that were most pronounced at the sparser 
sampling frequencies.  These artifacts were however greatly 
attenuated in the maps produced from the integrated models.  
The kriging and cokriging maps were virtually 
indistinguishable when the same primary data were modeled.   
 
Maps of estimation errors were produced by subtracting the 
actual height map from the estimated height maps.  Overall, 
every model underestimated canopy height, although the 
estimation bias was an order of magnitude greater for the 
regression models than for any of the spatial or integrated 
models.  The standard deviation of the estimation errors for 
the spatial and integrated models decreased as the spatial 
sampling frequency increased. 
 
Spatial patterns in the error maps for the spatial and 
integrated models became less apparent as sampling density 
increased, while sampling density had no effect on error 
patterns for the aspatial regression models.  Moran’s I 
statistic was useful for quantifying the significance of the 
spatial autocorrelation remaining in the height estimation 
errors for all models.  All regression models, and all models 
derived from the two sparser point sample datasets (2000 
and 1000 m), failed to remove the spatial dependence from 
the residuals.  The spatial models applied to the 2000 m 
transect sample dataset also left significant spatial 
autocorrelation in the residual variance, although the 
integrated models did not.  All other models successfully 
accounted for spatial autocorrelation in the sample data. 
 
 
 
 
 

5.  DISCUSSION 
 
5.1 Ordinary Least Squares Regression 
 
The high similarity among all regression estimates of height 
indicates the insensitivity of the regression models to sample 

size, sample pattern, sampling frequency, or number of 
ETM+ bands selected.  Regression suffered the worst from a 
consistent estimation bias, overestimating shorter stands 
while underestimating taller stands.  On the other hand, 
regression did preserve the spatial pattern of stands across 
the study landscape. 
 
We included the UTMX and UTMY location variables in the 
regression models as an easy way to account for a potential 
geographic trend across our study area, following the 
approach of Metzger (1997).  Yet most of the height data 
variance explainable with regression was explained by ETM+ 
band 7 alone.  The location variables (particularly UTMY) 
were selected by some of the stepwise regression models but 
only for those sampling strategies with a high data volume.  
In these cases, the addition of the location variables and other 
ETM+ bands as explanatory variables carried statistical 
significance but probably lacks biological significance.  
 
Regression models of canopy height from future VCL-
Landsat ETM+ integration will likely be less accurate than in 
this study.  We developed a multiple regression model for 
estimating canopy height in southern Washington at the Wind 
River Canopy Crane Research Area (Hudak, unpublished), an 
area with canopy structure and composition very similar to 
the McDonald-Dunn Research Forest.  The regression model 
was developed from a 1995 Landsat TM scene (bands 1-7, 
plus UTMX and UTMY locations) and lidar data acquired in 
1995 by the SLICER instrument, a waveform-sampling lidar 
system more similar to VCL than the discrete-return 
Aeroscan lidar used in this study.  The correlation between 
measured and estimated height values at Wind River was 
substantially less (r = 0.57) than at McDonald-Dunn (r = 
0.76).  Whether height estimates after adding a 
kriged/cokriged VCL residual surface to the regression surface 
will also be less accurate remains to be seen, but should not 
comprise the utility of our integrated modeling approach. 
 
5.2 Ordinary Kriging/Cokriging 
 
In stark contrast to regression, height estimates from the 
spatial methods were only slightly biased, but were highly 
sensitive to sampling frequency and pattern, which produced 
spatial discontinuities in the resulting maps.  These 
discontinuities were visually distracting when the modeled 
variable (canopy height in this case) was undersampled 
relative to the spatial frequency at which it actually varies; 
the semivariograms indicate that the range of spatial 
autocorrelation in canopy height is no more than 500 m in 
this landscape.  Beyond 500 m from the nearest sample, the 
semivariograms carried little or no weight in the estimation; 
this produced the smoothing effect visible especially in the 
2000 and 1000 m kriged/cokriged maps.  At sampling 
intervals of 500 or 250 m, all estimates were at or below the 
range of spatial autocorrelation for this landscape, so little 
smoothing occurred. 
 
Stein and Corsten (1991) found that kriging/cokriging 
estimates differ only slightly from each other, and that the 
advantage of cokriging is greater when a highly correlated 
secondary variable is sampled intensely.  We found cokriging 
slightly more advantageous than kriging at all sampling 



  

frequencies, perhaps because canopy height and the ETM+ 
panchromatic band were only weakly correlated (r = -0.43). 
 
Journel and Rossi (1989) showed how ordinary kriging or 
cokriging is capable of modeling a trend component in 
interpolation situations, which is confirmed in our study by 
the lack of any visible trend or anisotropy in the error maps 
from the spatial models.  Ordinary kriging or cokriging is 
advisable only in interpolation situations such as in this 
study; in extrapolation situations, it may be better to use 
universal kriging (Journel and Rossi, 1989; Stein and Corsten, 
1991) or ordinary kriging with an external drift (Berterretche, 
2001).  In cases where anisotropy exists in the landscape, 
anisotropic kriging models having a directional component 
can be employed.  Goovaerts (1997) thoroughly presents the 
many kriging/cokriging procedures available. 
 
5.3 Integrated Method 
 
Most of the bias in the regression estimates was eliminated in 
the integrated models, where the regression residuals were 
subsequently kriged and added back to the regression surface.  
We found the advantage of cokriging over kriging to be greater 
with the height residuals than with the height values.  
Perhaps because the regression models explain such a large 
proportion of the total variation in canopy height (r2 = 0.58), 
the height residuals may correspond more closely than the 
height values to the fine-scale structural features in the 
panchromatic image. 
 
The integrated methods proved superior because they 
preserved the spatial pattern in canopy height, like the 
regression models, while also improving global and local 
estimation accuracy, like the spatial models.  They have no 
apparent disadvantage relative to aspatial or spatial methods 
alone. 
 
The estimation methods applied to lidar canopy height data 
in this analysis are applicable to field data, as has already 
been demonstrated by Atkinson (1992, 1994).  The samples 
need not be situated along a systematic grid; the methods are 
as applicable to random or subjective sampling strategies, as 
long as the samples represent the population in both 
statistical and geographical space.  
 
5.4 Alternative Modeling Techniques 
 
For estimation, inverse regression models (Curran and Hay, 
1986) should be considered when the explanatory variables 
are dependent on the variable of interest.  Surface radiance is 
influenced by canopy height, however Landsat imagery is 
much more sensitive to the spectral properties of the surface 
materials than to their height.  Another criticism of standard 
regression is that it accounts for errors in only the 
explanatory variables (Landsat bands 1-7) and assumes a lack 
of measurement error in the independent variable (lidar 
height).  All remotely sensed data including lidar are subject 
to several sources of error: irradiance variation, sensor 
calibration, sensor radiometric resolution, sensor drift, signal 
digitization, atmospheric attenuation, and atmospheric path 
radiance.  An alternative approach that accounts for errors in 
both the independent and dependent variables is reduced 

major axis (RMA) regression (Curran and Hay 1986).  
Regardless of the regression method selected, we argue 
against using regression models alone to estimate canopy 
height.  Our regression equations were useful for explaining a 
large proportion of the total variance in canopy height due to 
high covariance with measured radiance, but not due to any 
functional relationship.  As stated in our objectives, we 
considered it most useful to present the most commonly used 
techniques for this paper, and OLS regression is clearly the 
standard empirical modeling tool. 
 
For mapping, conditional simulation can be a good alternative 
to the estimation methods presented here (Dungan, 1998, 
1999).  Conditional simulation “conditions” stochastic 
predictions of the modeled variable within the spatial range of 
the sample data, as defined by the same semivariogram model 
used for kriging.  Although locally inaccurate, conditional 
simulation preserves the global accuracy and spatial pattern 
of the data modeled.  These qualities can be important for 
some applications, such as modeling variables as input for 
ecological process models.  For example, Berterretche (2001) 
simulated LAI values across a boreal forest, for the purpose 
of informing a spatial model of net primary production 
(NPP).  A single eddy flux tower centered at the site 
predicted NPP from a continuous stream of trace gas, light, 
temperature, and humidity measurements (Running et al., 
1999).  LAI is the key structural parameter driving NPP, yet 
one of the largest sources of uncertainty for modeling NPP at 
the ecosystem level.  Conditional simulation provided 
multiple realizations (maps) of LAI, each map having a 
pattern of LAI values similar to remotely sensed indices of 
canopy structure (Berterretche, 2001).  This set of maps 
provided a probability distribution of LAI predictions for 
every pixel (except those “conditional” locations where LAI 
was measured in the field, where the field value was 
preserved).  Such multiple realizations of LAI provide a 
spatial measure of uncertainty, which could prove important 
for assessing the sensitivity of ecosystem NPP to spatial 
variation in LAI. 
 
A sensitivity analysis was not possible with the single map 
realizations created in this study, but neither was it 
necessary.  We ran conditional stochastic simulations of 
canopy height, and height residuals, from our 8 sample 
datasets.  In every case, local accuracy was markedly lower 
than for any of the estimation methods we tested.  Since local 
accuracy was important for our objectives, while multiple 
realizations were not, we pursued simulation methods no 
further for this paper.  The decision of which estimation or 
simulation methods to use for modeling LAI, height, or any 
other variable ultimately depends on user objectives. 
 
5.5 Sampling Strategy 
 
Traditionally, most remote sensors have afforded analysts 
with a certain luxury by sampling the entire population 
within the extent of coverage.  This has precluded any need 
to apply spatial interpolation strategies such as kriging, yet 
imagery is full of underexploited spatial information.  A 
number of studies have demonstrated the value of 
geostatistical analysis tools such as semivariograms (e.g. 
Curran, 1988; Glass et al., 1988; Woodcock et al., 1988; 



  

Cohen et al., 1990; Hudak and Wessman, 1998).  As remote 
sensing technology has advanced towards increasing spectral, 
spatial, and temporal resolution, data processing and storage 
technologies have kept pace, enabling the continued 
availability of comprehensive data even as those data 
volumes have exponentially increased.  While these trends 
may very well continue, it is instructive and useful to 
consider the applicability of remote sampling instruments 
such as ICESat and VCL. 
 
We found that a 2000 m transect sampling strategy 
simulating the original VCL sampling design is not optimal 
for vegetation mapping of dense coniferous forests.  The 
more recent, 4000 m transect sampling design of VCL would 
be even more problematic, at least in western Oregon where 
forest structure predominantly varies at the scale of 
individual stands with spatial frequencies of <500 m (Cohen 
et al., 1990).  Better maps of canopy height could be achieved 
with less lidar data if a 250 m point sampling strategy were 
used.  This reduced data volume would alleviate data 
transmission, storage, and processing loads.  Processing time 
is proportional to data volume when running geostatistical 
models in particular.  Whether or not a point sampling 
strategy could be feasibly designed into the next lidar satellite 
for vegetation applications is an engineering issue and beyond 
the scope of this paper, but the point sampling design of 
ICESat suggests that this technology already exists.  Future 
lidar missions designated for vegetation inventories should be 
designed by engineers and vegetation ecologists who have 
given due consideration to application of the data. 
 
 

6.  CONCLUSION 
 
Integration of lidar and Landsat ETM+ data using 
straightforward empirical modeling procedures can be used to 
improve the utility of both datasets for forestry applications.  
Our integrated technique of ordinary cokriging of the height 
residuals from an OLS regression model proved the best 
integration method for estimating and mapping canopy 
height.  We encourage the use of our integrated modeling 
approach in a variety of ecosystems once lidar sample data 
become readily available.  Results strongly support our 
hypothesis that the VCL satellite will undersample the highly 
managed forest landscapes of western Oregon and probably 
many other regions.  Future lidar satellites for vegetation 
mapping in this region should sample points at spatial 
intervals of 250 m or less.  This would ensure that every 
estimate is no more than 180 m from the nearest sample 
while also keeping the sample data volume to a manageable 
level and therefore maximizing the efficiency of our integrated 
modeling approach.  An equitable distribution of sample data 
is critical for lidar-Landsat ETM+ integration. 
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