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ABSTRACT

We implemented a strategy for terrain, vegetation and building detection, based on laser range data only. The result was obtained by
working on raw data, so we were able to take advantage of the full resolution potential of laser scanning. The detection of objects was
performed in two stages: first, elevated objects and ground are separated, and then the objects are classified as vegetation or buildings.
Work is still in progress, about the extraction and classification of entities. A comparative analysis of the first pulse, the last pulse and
intensity data can improve the result of clustering.
Results obtained in different environments with one-meter grid laser data are shown; we have tested the algorithm on city areas,
countryside, river bed, landslides, mountains and wooded terrain.

1 INTRODUCTION

Laser scanning, provides high detailed Digital Surface Models, and
we are able to extract a lot of information with very simple
tecniques. A gridded network model is well suited for storage in a
matrix and subsequently is well organized for simple computer
algorithms. For example, a matrix can be represented as a raster,
and we can use image processing tecniques to extract information.
However, the nodes of the gridded network have to be
constructed by interpolation in the original data set. Consequently
some of the information will be lost. To take advantage of the full
resolution potential of laser scanning, we must work on raw data,
representing them, for example, by using irregular triangular or
tetrahedral networks. Triangular models have been used in terrain
modelling since the 1970s. However, because of limitations of
computers and the complexity of TIN data structures, gridded
models were preferred to triangular models.
We implemented a strategy to classify raw data using a simple data
base structure, based on gridded networks. This strategy
simplifies classification algorithms. Data base structure allows
direct access to data; the algorithm assigns a flag and a cluster
code to all the raw data, and this information is stored in the
database. Then, the classified raw data can be represented as a
triangular network. Detection of clusters in raw data is performed
in two stages: first, elevated objects and ground are separated, and
then the objects are classified as vegetation or buildings. The first
stage is based on a local minimum criterion, which excludes
elevated points from analysis. Then all the points within some
distance of the estimated ground surface are classified as ground

points. Ground evaluation is refined in two iterations. In the
second stage the algorithm classifies non ground points as
vegetation or buildings with a variance criterion.

2 TERRAIN EXTRACTION

The algorithm that extracts ground points from raw data, operates
as a filter, applying a local operator to all the elements of the
gridded network. The target of the first stage, is to obtain a rough
approximation of the DTM, excluding elevated points. Algorithm
calculates the minimum height in the local operator, then assigns
points to the ground if their heights are compatible with a local
slope; this idea is refined in the local regression criterion, that also
considers the variance of the local data set. Then, the algorithm
calculates height value in the center of the operator; this value is
the weighted mean of the ground point heights in the operator.
Weights depends on the distance from the operator center,
normalized with Gauss distribution. Maximum building size affects
local operator size.
In the second stage, the algorithm uses a threshold criterion to
classify points as ground or non ground. Output of this
classification is stored in the database. Finally the algorithm
recalculates the DTM as the wheighted mean of ground points
only.
These steps are repeated once. In the second iteration, to refine
the classification, all the parameters (size of local operator, local
slope,  coefficients of variance propagation and threshold value)
are more restrictive.



Figure 1: Algorithm flow chart.

Classification criteria

Local regression criterion. A criterion to detect ground points
can be defined as a function of the maximum height difference
between two points pi and pj in the local operator (A):
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where d is the planimetric distance [Vosselmann, 2000]. We have
used this criterion, studing relations between maximum height
difference  and points distance. We can sort points by their
planimetric distance from the local minimum pmin. To extimate a
local slope, we calculate the parameters of the linear regression of
the sorted data set
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This extimate assumes that points far from minimum affect the
local slope less; so data are weighted with the factor
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Linear regression of this population provides the parameters a
(intercept), b (gradient), σ2

a (standard deviation) and σ2
b (gradient

standard deviation). Parameters a and b and the propagation of
their variance, define the local regression criterion, which links
∆hmax to the distance d:
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The parameters k2
a and k2

b depends on terrain typology, so their
calibration is very important. Indicative values are k2

a=5 and
k2

b=0.005.

Figure 2: Linear weighted regression. Points in the grayed area are
used to calculate the DTM.

Threshold criterion. The algorithm, after the computation of first
approximation DTM on the basis of local regression criterion,
classify raw data by vertical distance from the DTM. We define
two threshold values, k1 and k2 (with k1<k2); the following
contitions explains the classification criterion:

bkhhi cos1min <− ground points

bkhhi cos2min >− non ground points

bkhhbk i coscos 2min1 ≤−≤ non classified points

Between k1 and k2, the algorithm is not able to classify points as
ground or non ground. To restrict classification errors in zones
with  high slopes, threshold values are not constant, but depend on
gradient.

3 CLASSIFICATION OF VEGETATION AND
BUILDINGS

For many applications we need to detect the characteristics of
scanned objects. This detection may be fully automatic. At first,
classification of vegetation and buildings is very important. These
two classes of objects are characterized by different values of
variance in their spatial distribution, so we can use this parameter
to extract vegetation and buildings from laser range data.

Fitting a local plane. Classifying the point P(xj,yj,zj), we consider
it in relation to the N points Qi(xi,yi,zi) with i=1,N, that satisfay the
following condition:

( ) rQPd i ≤, [5.]

where ℜ∈r  is a parameter depending on sampling density, and
( )iQPd ,  is the euclidean distance
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To fit the points Qi and the central point P with a local plane, their
distance from the plane ax+by+cz =d has been minimized. The
correction to the i-th point is:
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Its variance is
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Classification of ground points
(threshold criterion)

Exclusion of elevated points in a local operator
(local regression criterion)

Data base DSM

Calculate DTM as weighted mean of the ground point heights.

DTM

DEM

Calculate height with weighted mean

Codes file

Points within a threshold distance from the estimated ground
surface are classified as ground points

Calculate local minimum

Calculate local slope

Variance propagation.
Calculate maximum height for every element of the local

operator.

Parameters initialization

I=2



The following function must be minimized:
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Variance criterion. In any 3D point distribution we can always
fitting a local plane, if we have at least three points. But this plane
may be or not be significant. We can accept or reject the
hypothesis that the local plane is significant, by χ2 test on the four
parameters a, b, c and d, or on any single parameter.
Then, Student's t test applied to normalized residuals tell us if the
central point fits the local plane.
So, we can observe the following conditions:
1 The local plane exist, and the central point P fit the plane.
2 The local plane exist, but the central point don't fit the plane.
3 The local plane don't exist.
Classifying objects with this criterion, we can assume that in the
case 1 the point belong to a building, or to another artificial
structure, in the case 2 the point is an outlier, and in the case 3
belong to the vegetation.

Raw data classification. We have performed two different
classifications in raw data, using local regression and threshold
criteria, and using variance criterion. Now we can join the output
of these two classifications, associating a decision to every couple
of results. For example, if a point is classified as non ground by
local regression and threshold criteria, and moreover fit a local
plane, we can decide to assign it to a building. The decisions are
described in table 1.

Output of local
regression and

threshold criteria

Output of variance
criterion

Combination of
criteria

Fit the local plane Building

Don't fit the local plane Outlier

Don't exist a local plane Vegetation
Non ground

Isolated point Outlier

Fit the local plane Ground

Don't fit the local plane Outlier

Don't exist a local plane Vegetation
Not classified

Isolated point Outlier

Fit the local plane Ground

Don't fit the local plane Outlier

Don't exist a local plane Rough ground
Ground

Isolated point Ground

Table 1 – Decisions associated to every combination of
classification results.

4 TESTS

We obtained DTMs in zones with very different morphology. The
algorithm was tested in built-up areas, countryside, river beds,
landslides, mountains and wooded areas. We performed tests on
four data sets, acquired with three different scanning systems and
in different sampling modes. So, the algorithm was tested in a large
range of situations and applications.

TopoSys data set on Pavia town. Historical city of Pavia is a
hard test area for every classification algorithm. Narrow streets and
complex buildings alternate with parks and gardens, and vegetation
is often close to buildings. Other sources of noise are car parks!
Table 4 report tests results. Tests 1 and 2 concerning flight T1
were performed on the same zone of Pavia city with different
parameters. In this area there are no steep slopes, and the more
restrictive parameters used in test 2 gave best results. Area used in
test 3 has steep slopes near the castle; so we used less restrictive
parameters that those used in test 1.

Figure 3: Raw data classified in two zones of Pavia (TopoSys data
set). a) Pavia city, ground is correctly classified; here we have

performed test 1 and 2. b) Castle, there are some errors in ground
classification near castle moat; this is the area of test 3.

TopoSys data set on Corniglio landslide. Test zone is
mountainous and densely wooded. DTM extraction is very
difficult, also because we have first pulse data only. Wooded areas
are very vaste, so operator size must be greater than in other
cases. In tests we used a size of 41 m, but this size was not
sufficient.



Figure 4: Altimetric sections of TopoSys data set on Corniglio
landslide. Points classified as ground are in black, as non ground

in white.

TopEye data set. This data set is very simple to process.
Scanning system has sampled last pulse and first puls together, on
a poorly wooded area. Besides, last pulse measurements has a
good penetration of vegetal canopy, and give a regular
representation of ground. These good conditions permit to
calculate DTM classifying, in every knot of regular network, height
measurements respect to median m( . We define DTM as:
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where r and R are two threshold values.
We have calculated DTM with the iterative algorithm too. The data
set describes the ground without gaps, so the algorithm doesn't
need very large operator size. Variance propagation parameters
instead, need greater than average values; this is due to steep
slopes ground in many zones.
The difference between the two DTMs is a few centimeters, but it
is greater on slopy ground.

Figure 5: a) DTM computed in function of median. b) DTM
calculated with iterative refinements. The zones in which the

algorithm is not able to classify ground points are in black; these
zones are vertical o sub-vertical ground. c) Difference between the

two DTMs has an average of 7 cm and an RMS of 20 cm. d)
Misclassified points.

The algorithm is not able to classify ground points correctly, if
slope is vertical or sub-vertical, as you can see in figure 5d. This
error has been limited by using threshold value function of slope
(see threshold criterion). In the Bracigliano test area, misclassified
points are 1% of total; this value may increase in mountainous
areas with very uneven terrain.

Figure 6: TopEye data set on Bracigliano landslide. Right
classification of points as ground or non ground.



Figure 7 – Test on Pavia town, the castle (• ground, • rough ground, • vegetation, • buildings, • outliers).

Figure 8 - Test on Pavia town, the medieval towers and the old city (• ground, • rough ground, • vegetation, • buildings, • outliers).



System Fly zone Fly Frequence
[kHz]

Height
[m]

Sampling density
[punti/m2] Acquisition

T1 80 400 11,6 L.P.
T2 80 850 5,5 L.P.TopoSys Pavia town: historic city, countryside,

industrial area, Ticino river.
T3 80 850 5,5 F.P.

TopoSys Corniglio landslide: mountain area;
densly wooded area. T4 80 300 ÷ 900 5 ÷ 13 L.P.

O1 10 600 1,0 F.P. & L.P.
O2 10 650 0,4 F.P. & L.P.Optech Pavia town: historic city, countryside,

industrial area, Ticino river.
O3 10 500 2,8 F.P. & L.P.

TopEye Bracigliano landslide: mountain area;
wooded area. E1 100 ÷ 200 17 F.P. & L.P.

Table 2: Data sets used in tests.

First iteration parameters Second iteration parameters
Operator size Regression Threshold Operator size Regression ThresholdSystem Fly Test

O ka kb k1 O ka kb k1 k2
T1 1 41·41 10 0,01 100 11·11 5 0,005 50 100
T1 2 41·41 5 0,005 50 11·11 2 0,002 25 50TopoSys
T1 3 41·41 5 0,005 50 11·11 2 0,002 25 50

1 41·41 20 0,02 200 11·11 10 0,01 100 200TopoSys T4
2 41·41 10 0,01 100 11·11 5 0,005 50 100

TopEye E1 1 11·11 20 0,02 200 5·5 10 0,01 100 200

Table 3: Parameters values assumed in tests.

Classified points [%] Misclassified points [%]System Fly Test
Ground Vegetation Buildings Ground Vegetation Buildings

Not classified
points

1 29,9 67,7 0,0 1,6 2,4
2 27,0 71,9 0,0 0,0 1,1TopoSys T1
3 48,0 49,2 0,0 5,4 2,8
1 41,4 43,9 - ~30 0,0 - 14,8TopoSys T4
2 17,8 75,8 - ~7 0,0 - 6,3

TopEye E1 1 88,6 10,4 - 0,0 1,0 - 0,9
Values in this table are indicative, because referred to test areas, not to total fly.

Table 4: Sintetic results of tests.

5 CONCLUSIONS

The most important result of the tests is that the algorithm we
have proposed is very sensitive to the parameters. This fact has
a negative influx on algorithm output. But algorithm has
classified points successfully, if parameters were well calibrated.
Safely algorithm require parameter calibration on test areas,
before proceeding to whole data set processing. A comparison
with other algorithms will be very useful.
We used results obtained in this study as auxiliary knowledge
for data segmentation.
Algorithm is implemented in DSM_Laser software.
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