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ABSTRACT

This contribution gives an overview of automatic 3D scene reconstruction and visualisation from uncalibrated and handheld camera
image sequences. We address specifically the problems that are associated with calibration and visual-geometric reconstruction of
complex scenes with occlusions and view-dependent surfaces. The scene is then represented by large sets of calibrated real viewpoints
with image texture and depth maps. Novel views are synthesized from this representation with view-dependent image-based rendering
techniques at interactive rates.

1 INTRODUCTION

3D scene analysis is an important topic for a variety of applica-
tions. In visual robot guidance, fast and precise geometric rep-
resentation of the surrounding environment as well as precise
self-localisation is crucial for efficient path planning, obstacle
avoidance, and collision-free navigation. The precise visual ap-
pearence of the scene is only of secondary importance. Visual
appearence is becoming important in visual servoing (6) where
the goal is to position a vision-guided robot such that the ob-
served real image matches a stored reference image. Augmented
and Mixed Reality (2) on the other hand is a rapidly growing field
that aims at seamless integration of virtual objects into live film
footage with highest visual quality, while the geometric proper-
ties are only of importance to help achieving the primary goal of
visual insertion. Here, precise camera tracking and calibration
must be achieved to avoid object jitter. While Augmented Real-
ity is mostly concerned with realtime video tracking of predefined
markers and direct visual insertion of virtual objects into the live
video stream, Mixed Reality goes even further and aims at the in-
tertwining of real and virtual objects in a mixed real-virtual space.
Interdependences of occlusions, shading and reflections between
both real and virtual objects have to be taken into account. No
predefined markers are used but the real scene itself is tracked
without markers.

In this contribution we are concerned with Mixed Reality in ex-
tended virtual studio film production (1) where both, camera track-
ing and visual image interpolation, is needed. In this scenario, a
real background scene is recorded and virtualized such that vir-
tual views of the real scene can be extrapolated from the prere-
corded scene. Real actors that have been recorded in a virtual stu-
dio, and computer-generated virtual ojects are then both merged
with the background scene in a seamless fashion.

In Mixed Reality applications it is neccessary to reconstruct the
3D background scene with high fidelity. In case of simple scene
geometry, few images may suffice to obtain a 3D surface model
that will be textured from the real images. Novel views of the
scene can then be rendered easily from the model. Typical ex-
amples are architectural or landscape models with mostly diffuse
and opaque surfaces. In other cases, however, scene geometry
and surface properties may be very complex and it might not be
possible to reconstruct the scene geometry in all details. In this
case one may resort to lightfield rendering (28) by reconstructing
the visual properties of the surface reflection. This is possible

only in very restricted environments because a very dense im-
age sampling is needed for this approach. We propose a hybrid
visual-geometric modeling approach where a partial geometric
reconstruction (calibrated depth maps) is combined with unstruc-
tured lumigraph rendering (16) to capture the visual appearance
of the scene.

Visual-geometric reconstruction aims at capturing the visual ap-
pearence of a complex scene by first approximating the geomet-
ric scene features and then superimposing the precise visual fea-
tures over the approximation. The real scene is scanned by one
or more video or photo cameras. The images from these cameras
are termed real views. As we may want to capture complex 3D
scenes with occlusions and possibly view-dependent surface re-
flections, we will need to capture very many real view points that
cover the complete viewing space. Therefore we have to register
real views that span all possible views of a viewing volume to
capture all possible scene details.

Virtual views of the scene are novel views that are rendered by
extrapolating the visual appearence of the scene from the most
similar real views. The local geometry of the scene as seen from
a real view is captured by estimating a depth map for each view.
Parallax effects between real and novel views are compensated
for by warping the real views towards the virtual view according
to the local depth map. Thus, for visual-geometric reconstruction
and rendering the following three main steps are needed:

1. Estimate 3D position and calibration of each real view in
world coordinates,

2. Compute local depth map for each real view,

3. Render novel views from the reconstructed real views.

In the following sections we will describe the different steps of
this hybrid approach in more detail. In section 2 we will explain
the camera tracking and calibration step. Section 3 deals with
dense depth estimation from multiple real view points. In Section
4 different methods to render novel views are discussed.

2 CAMERA TRACKING AND CALIBRATION

This work is embedded in the context of uncalibrated Structure
From Motion (SFM) where camera calibration and scene geome-
try are recovered from images of the scene alone without the need

ISPRS Archives, Vol. XXXIV, Part 3/W8, Munich, 17.-19. Sept. 2003
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

3



for further scene or camera information. Faugeras and Hartley
first demonstrated how to obtain uncalibrated projective recon-
structions from image point matches alone (10, 17). Beardsley
et al. (3) proposed a scheme to obtain projective calibration and
3D structure by robustly tracking salient feature points through-
out an image sequence. Since then, researchers have tried to find
ways to upgrade these reconstructions to metric (i.e. Euclidean
but unknown scale, see (11, 37, 32)).

When very long image sequences have to be processed there is
a risk of calibration failure due to several factors. For one, the
calibration as described above is built sequentially by adding one
view at a time. This may result in accumulation errors that in-
troduce a bias to the calibration. Secondly, if a single image in
the sequence is not matched, the complete calibration fails. Fi-
nally, sequential calibration does not exploit the specific image
acquisition structure used in this approach to sample the viewing
sphere. In our visual-geometric approach, multiple cameras may
be used to scan a 2D viewing surface by moving a rigid multi-
camera rig throughout the viewing space of interest. We have
therefore developed a multi-camera calibration algorithm that al-
lows to actually weave the real views into a connected 2D view-
point mesh (25, 19).

2.1 Image pair matching

The projection of scene points onto an image by a camera may
be modeled by the equation � � � � . The image point in pro-
jective coordinates is � � � � � � � � 	 
 , where � � � � � � � 
 � � 	 

is the world point and � is the � � � camera projection matrix.
The matrix � is a rank-3 matrix. If it can be decomposed as� � � � � 
 � � � 
 � 	 where the rotation matrix R and the transla-
tion vector � represent the Euclidian transformation between the
camera and the world coordinate system. The intrinsic param-
eters of the camera are contained in the matrix � which is an
upper triangular matrix� � � � � � �� � � � � �� � �  � (1)

where
�

is the focal length of the camera expressed in pixel units.
The aspect ratio

�
of the camera is the ratio between the size of

a pixel in x-direction and the size of a pixel in y-direction. The
principal point of the camera is ! � � � � � "

and
�

is a skew parameter
which models the angle between columns and rows of the CCD-
sensor.

The relation between two consecutive frames is described by the
fundamental matrix (18) if the camera is translated between these
frames. The fundamental matrix # $ % & maps points from camera '
to lines in camera ( . Furthermore the fundamental matrix can be
decomposed into a homography ) *$ % & which maps over the plane+ and an epipole , which is the projection of the cameraa center
of camera ' in camera ( # $ % & � � , 	 � ) *$ % & � (2)

where � � 	 �
is the cross product matrix. The epipole is contained

in the null space of # : # & % $ � , � �
.# & % $ can be computed robustly with the RANSAC (RANdom

SAmpling Consensus) method (36). A minimum set of 7 fea-
tures correspondences is picked from a large list of potential im-
age matches to compute a specific # . For this particular # the
support is computed from the other potential matches. This pro-
cedure is repeated randomly to obtain the most likely # & - with
best support in feature correspondence. From the # we can ini-
tialize a projective camera pair that defines a projective frame for
reconstruction of the corresponding point pairs (12, 31).

2.2 Multi-viewpoint matching

Once we have obtained the projection matrices we can triangu-
late the corresponding image features to obtain the correspond-
ing 3D object features. The object points are determined such
that their reprojection error in the images is minimized. In addi-
tion we compute the point uncertainty covariance to keep track
of measurement uncertainties. The 3D object points serve as the
memory for consistent camera tracking, and it is desirable to track
the projection of the 3D points through as many images as pos-
sible. This process is repeated by adding new viewpoints and
correspondences throughout the sequence.

Although it can be shown that a single camera suffices to obtain a
mesh of camera view points by simply waving the camera around
the scene of interest in a zig-zag scan (24, 25), a more reliable
means is to use an . -camera rig that simultaneously captures a
time-synchronized 1D sequence of views. When this rig is swept
along the scene of interest, a regular 2D viewpoint surface is gen-
erated that can be calibrated very reliably by concatenating the
different views in space and time. For each recording time, a
number of . simultaneous real views of the scene are obtained
and can be used to reconstruct even time-varying scenes. When
the camera rig is moved, a sequence of / images is obtained for
each of the . cameras. Thus, one may obtain a 2D viewpoint sur-
face of / � . views by simply sweeping the camera rig throughout
the scene (26). For each time step, correspondences between ad-
jacent cameras on the rig are searched and fundamental matrices
are computed between all . cameras on the rig. Ideally, the fun-
damental geometry should be identical for each time step, but due
to slight vibrations and torsion of the rod during motion, small
deviations of the fundamental geometry have to be accounted for.
Additionally, the motion of the rod can be tracked by estimating
the position of each camera on the rod simultaneously between
adjacent time steps. By concatenating the camera motion in time
and the different cameras on the rod, a 2D viewpoint surface is
built that concatenates all real views.

2.3 Camera selfcalibration

The camera tracking as described above will generate a projec-
tive reconstruction with a projective ambiguity. The fundamental
matrix is invariant to any projective skew. This means that the
projection matrices � $ and � & lead to the same fundamental ma-
trix # $ % & as the projectively skewed projection matrices 0� $ and0� & (18). This property poses a problem when computing cam-
era projection matrices from Fundamental matrices. Most tech-
niques for calibration of translating and rotating cameras at first
estimate the projective camera matrices 0� & and the positions 0� -
of the scene points from the image data with a Structure-from-
Motion approach, as described above. The estimated projection
matrices 0� & and the reconstructed scene points may be projec-
tively skewed by an unknown projective transformation ) 1 2 1 .
Thus only the skewed projection matrices 0� & � � ) 1 2 1 and the
inversely skewed scene points 0� � ) 3 41 2 1 � are estimated in-
stead of the true entities. For uncalibrated cameras one cannot
avoid this skew and selfcalibration for the general case is con-
cerned mainly with estimating the projective skew matrix ) 1 2 1
e.g. via the DIAC (18) or the absolute quadric (37, 32). Camera
selfcalibration from unknown general motion and constant intrin-
sics has been dicussed in (10, 29, 20). For varying intrinsics and
general camera motion the selfcalibration was proven by (37, 21,
32). All these approaches for selfcalibration of cameras only use
the images of the cameras themselves for the calibration.

Furthermore there exist approaches for camera calibration with
some structural constraints on the scene. For example an in-
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teresting approach was recently proposed by Rother and Carls-
son (33) who jointly estimate fundamental matrices and homo-
graphies from a moving camera that observes the scene and some
reference plane in the scene simultaneously. The homography in-
duced by the reference plane generates constraints that are similar
to a rotation sensor and selfcalibration can be computed linearily.
This approach needs information about the scene in contrast to
our approach which applies constraints only to the imaging de-
vice.

Only a few approaches exist to combine image analysis and exter-
nal rotation information for selfcalibration. In (34, 4) the calibra-
tion of rotating cameras with constant intrinsics and known rota-
tion was discussed. They use nonlinear optimization to estimate
the camera parameters. A linear approach for an arbitrarily mov-
ing camera was developed in (14, 13). That approach is able to
compute linearily a full camera calibration for a rotating camera
and a partial calibration for freely moving camera. More often,
calibrated cameras are used in conjunction with rotation sensors
to stabilize sensor drift (30). Thus, if external rotation data is
available it can be used with advantage to stabilize tracking and
to robustly recover metric reconstruction of the scene.

As an example for our multi-camera tracking system a mixed-
reality application was developed where the interior of the Lon-
don Museum of Natural History was scanned with a 4-camera
system. 4 cameras were mounted in a row on a vertical rod (see
figure 1) and the rig was moved horizontally along parts of the
entrance hall while scanning the hallways, stairs, and a large di-
nosaur sceleton. While moving, images were taken at about 3
frames/s with all 4 cameras simultaneously. The camera track-
ing was performed by 2D-viewpoint meshing (24) with additional
consideration of camera motion constraints. Prediction of poten-
tial camera pose is possible because we know that the cameras
are mounted rigidly on the rig. We also can exploit the fact that
all 4 cameras grab images simultaneously (26). Figure 1 (left)
shows the portable acquisition system with 4 cameras on the rod
and 2 synchronized laptops attached by a digital firewire connec-
tion. Figure 1 (right) gives an overview of parts of the museum
hall with the dinosaur sceleton that was scanned. The camera
rig was moved alongside the sceleton and 80x4 viewpoints were
recorded over the length of the sceleton. Figure 2 displays the
camera tracking with the estimated 360 camera viewpoints as lit-
tle pyramids and the reconstructed 3D feature point cloud ob-
tained by the SfM method. The outline of the skeleton and the
back walls is reconstructed very well.

Figure 1: Left: portable image capture system. Right: overview
of the scene to be reconstructed.

Figure 2: Camera viewpoints and reconstructed 3D feature points
of the dinosaur and walls as seen by the 4-camera-rig.

3 DEPTH ESTIMATION

Once we have retrieved the metric calibration of the cameras
we can use image correspondence techniques to estimate scene
depth. We rely on stereo matching techniques that were devel-
oped for dense and reliable matching between adjacent views.
The small baseline paradigm suffices here since we use a rather
dense sampling of viewpoints.

3.1 Stereoscopic disparity estimation

Dense stereo reconstruction has been investigated for decades
but still poses a challenging research problem. This is because
we have to rely on image measurements alone and still want
to reconstruct small details (needs small measurement window)
with high reliability (needs large measurement window). Tradi-
tionally, pairwise rectified stereo image were analysed that ex-
ploit some constraints along the epipolar line as in (15, 38, 5).
Recently, generalized approaches were introduced that can han-
dle multiple images, varying windows etc.(35, 27). Also, re-
altime stereo image analysis has become almost a reality with
the exploitation of the new generation of very fast programmable
graphical processing units for image analysis (39). We are cur-
rently using a hybrid approach that needs rectified stereo pairs but
can be extended to multiview depth processing.

For dense correspondence matching an area-based disparity esti-
mator is employed on rectified images. The matcher searches at
each pixel in one image for maximum normalized cross correla-
tion in the other image by shifting a small measurement window
(kernel size 7x7) along the corresponding scan line. Dynamic
programming is used to evaluate extended image neighborhood
relationships and a pyramidal estimation scheme allows to reli-
ably deal with very large disparity ranges (9).

3.2 Multi-camera depth map fusion

For a single-pair disparity map, object occlusions along the epipo-
lar line cannot be resolved and undefined image regions (occlu-
sion shadows) remain. The occlusions can be removed with multi-
image disparity estimation. The geometry of the viewpoint mesh
is especially suited for further improvement with a multi view-
point refinement (22). For each viewpoint a number of adjacent
viewpoints exist that allow correspondence matching. Since the
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different views are rather similar we will observe every object
point in many nearby images. This redundancy can also be ex-
ploited to verify the depth estimation for each object point, and
to refine the depth values to high accuracy.

We can further exploit the imaging geometry of the multi-camera
rig to fuse the depth maps from neighboring images into a dense
and consistent single depth map. For each real view, we can
compute several pairwise disparity maps from adjacent views in
the viewpoint surface. The topology of the viewpoint mesh was
established during camera tracking as described in section 2.2.
Since we have a 2D connectivity between views in horizontal,
vertical, and even diagonal directions, the epipolar lines overlap
in all possible directions. Hence, occlusion shadows left unde-
fined from singe-pair disparity maps are filled from other view
points and a potentially 100% dense disparity map is generated.

Additionally, each 3D scene point is seen many times from differ-
ent viewing directions, and this allows to robustly verify its 3D
position. For a single image point in a particular real view, all
corresponding image points of the adjacent views are computed.
After triangulating all corresponding pairs, the best 3D point po-
sition can be computed by robust statistics and outlier detection,
eiminating false depth values (22). Thus, reliable and dense depth
maps are generated from the camera rig.

As an example, the Dinosaur scene was evaluated and depth maps
were generated with different neighbourhoods. Figure 3 shows
an original image (top left) and the corresponding depth maps for
varying number of images taken into consideration. The depth
maps become denser and more accurate as more and more neigh-
boring images are evaluated. For images in an 8-neighbourhood,
the fill rate approaches 100% (figure 3, top right). However,
some outliers (white streaks) can be observed which are due to
the repetitive structures of the ribs. These errors must be elimi-
nated using prior scene knowledge since we know that the scene
is of final extent. A bounding box can be allocated that effectively
eliminates most gross outliers.

Figure 3: Original image (top left) and depth maps com-
puted from the Museum sequence. Top right: Depth map
from single image pair, vertically rectified (light=far, dark=near,
black=undefined). Bottom left: 1D sequential depth fusion from
4 vertically adjacent views. Bottom right: Depth fusion from a
2D neighbourhood (8-connectivity) with 8 adjacent neighbours
(horizontally, vertical, diagonal).

4 IMAGE-BASED INTERACTIVE RENDERING

The calibrated views and the preprocessed depth maps are used
as input to the image-based interactive rendering engine. The
user controls a virtual camera which renders the scene from novel
viewpoints. The novel view is interpolated from the set of real
calibrated camera images and their associated depth maps. Dur-
ing rendering it must be decided which camera images are best
suited to interpolate the novel view, how to compensate for depth
changes and how to blend the texture from the different images.
For large and complex scenes hundreds or even thousands of im-
ages have to be processed. All these operations must be per-
formed at interactive frame rates of 10 fps or more.

We have to address the following issues for interactive rendering:

� Selection of best real camera views,

� Multiview depth fusion,

� viewpoint-adaptive texture blending.

4.1 Camera ranking and selection

For each novel view to render, it must be decided which real cam-
eras to use. Several criteria are relevant for this decision. We have
developed a ranking criterion for ordering the real cameras w.r.t.
the current virtual view(7). The criterion is based on the normal-
ized distance between real and virtual camera, the viewing angle
between the optical axes of the cameras and the visibility, which
gives a measure of how much of the real scene can be transfered
to the virtual view.

All three criteria are weighted and combined into one scalar value
which represents the ability of a particular real camera to synthe-
size the new view. After calculating the quality of each camera,
the list of valid cameras is sorted according to quality. During
rendering it is finally decided how many of the best suited cam-
eras are selected for view interpolation.

4.2 Multiview depth fusion

The ranked cameras are now used to interpolate novel views.
Since the novel view may cover a field of view that is larger
than any real camera view, we have to fuse views from different
cameras into one locally consistent image. To efficiently warp
image texture from different real views into the novel viewpoint
we generate warping surfaces that approximates the geometry of
the scene. Two different approximations were tested: an inter-
polating connected triangular surface mesh and unconnected pla-
nar quadrangles (Quads). The interpolating surface mesh guar-
antees that for each image points in the virtual view some tex-
ture is mapped, however the mapping might be distorted at object
boundaries (7). The unconnected quads handle occluding bound-
aries better and distortions are much less visible, but at occlusion
boundaries there might be some textureless regions in the virtual
image that appear as holes (8). In both approaches, we merge the
data from the best ranked � views to adaptively build the novel
view.

Rendering from triangular patches: For interpolation from
the connected triangular surface, a regular triangular 2D-grid is
placed in the image plane of the virtual camera. This warping
surface will be updated for each novel virtual viewpoint. The
spacing of this grid can be scaled to the complexity of the scene.
For each triangular surface patch of the grid we test which real
camera gives the least distorted mapping according to distance,
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visibility and viewing angle of the real views. The approximating
3D surface depth is than mapped from the depth values of the
best real view, if available, and the surface patch is textured from
one or more best real views, depending on the texturing mode
(see section 4.3) Grid points that have no valid 3D depth value
associated are interpolated from adjacent valid points.

Rendering from Quads: Quads are generated just the inverse
way. We start from the real views and generate a quadtree of the
depth map that represents the depth map with boundary-adaptive
cells. Therefore, we automatically build a hierarchical depth rep-
resentation that segments the depth map well at depth boundaries
and efficiently represents large continuous or planar depth re-
gions. We start with a preselected coarse quadtree subdivision
of the depth map. For each cell we compute the approximation
error to the mean surface plane and subdivide it further if the ap-
proximation threshold is exceeded. The quadtree is stored in a
Level of Detail hierarchy file and can be rendered very efficiently
with OpenGL rendering hardware. For each novel virtual view,
all Quadtrees of the selected cameras are projected and rendered
into the virtual view.

4.3 Texturing

The texturing step effectively maps the image texture of real cam-
eras into the virtual view with the help of the viewpoint-adaptive
geometry. Several slightly different methods for texturing are
considered. The most simple one is to chose the best ranked cam-
era as texture source. If this real camera is not too far away from
the virtual camera and both have a similar field of view, the results
are good. This is the fastest texturing method since switching be-
tween different textures in one render cycle is not necessary and
each triangle has to be drawn only once. Problems arise when
parts of the mesh are not seen from the selected camera. These
parts remain untextured.

To texture all triangles properly it is necessary to select the texture
according to the cameras where the geometry originated from.
The triangle vertices are depth sample points where the originat-
ing real camera is known. However, since each vertex is gener-
ated independently, a triangle may have vertices from up to three
cameras. Here one may decide to either select the best-ranked
camera (single-texture mode) or to blend all associated camera
textures on the triangle (multi-texture mode). Proper blending of
all textures will result in smoother transition between views but
with higher rendering costs for multi-pass rendering.

Sharp edges between textures can be avoided by multi-texturing
and blending. Each triangle is drawn three times using the tex-
tures associated with the three cameras (multi-camera, multi-texture
mode). On modern graphics hardware it is also possible to use
single-pass multi-texturing. Different texture units are loaded
with the three textures and then the triangle is drawn only once.
This gives a speed-up of approximatly 30% compared to the multi-
pass texturing. The performance gain is not factor 3 as one would
expect, because for each triangle the texture units have to be
reloaded which is quite expensive. A detailed comparison of the
different texture modes can be found in (7).

As an example, the Dinosaur scene was rendered with the pro-
posed methods. The scene is particular difficult since it contains
very many small and repetitive structures with occlusions.

Figure 4 (top left) shows the camera track for 100 real views.
To compare the image synthesis with ground truth, one real view
was taken out of the sequence and re-synthesized with the trian-
gular mesh interpolation. Figure 4 (top right) shows the original
ground truth reference view. The synthesized reference view is

shown on the bottom part of figure 4. It can be seen that vis-
ible artifacts occur mostly near the occlusion boundaries of the
ribs. The synthesized ribs are clearly distorted due to boundary
distortion effects.

Figure 4: Ground truth comparison between real and synthesized
views. Top left: Position of real camera views. Top right: se-
lected real image as visual ground truth. Bottom: synthesized
reference image, showing image distortions in the rib region.

The quads perform much better in regions near occlusions since
they fit better to the occluding boundary. Figure 5 shows a syn-
thesized view of the dinosaur with the quad method. Here one can
see that the ribs are reproduced much better, however one can still
see visual artifacts from spurious quads that were generated from
the depth outliers as described in section 3.2.

Figure 5: Synthesized view rendered with quads.
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Figure 6: Original views number 3, 25,

Figure 7: Depth maps number 3, 25,

5 EXPERIMENTS WITH OUTDOOR SCENE

We used a 2-camera rig in an unstructured outdoor environment.
The cameras were mounted horizontally on the rod about 30 cm
apart and 106 image pairs were taken while walking through a
parking lot with cars, bushes, trees, and lamp posts. The camera
trajectory is about 70 m long and the scene has a horizontal exten-
sion of about 100x80 m. Figure 6 and 9 show 4 original views,
covering the length of the scene, and Figure 7 and 10 the associ-
ated estimated depth maps. Figure 8 shows the camera track with
some of the tracked 3D feature points and the camera positions
as little pyramids. Figure 11 shows a synthesized novel view of
the scene. The synthesized image was generated with triangular
mesh interpolation.

6 CONCLUSIONS

We have discussed an approach to render novel views from large
sets of real images. The images are calibrated automatically and
dense depth maps are computed from the calibrated views us-
ing multi-view configurations. These visual-geometric represen-
tations are then used to synthesize novel viewpoints by interpo-
lating image textures from nearby real views. Different rendering
techniques were developed that can handle occluded regions and
large amounts of real viewpoints at interactive rendering rates of
10 fps and more.

Figure 8: Camera tracks and tracked 3D feature points

Figure 9: original views number 70, 100.

Figure 10: depth maps number 75, and 100.
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