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ABSTRACT

(Zitnick and Kanade, 2000) proposes a cooperative approach for disparity estimation from stereo imagery based on support and inhi-
bition in three-dimensional (3D) disparity space. By several means we obtain a significant improvement over the results reported for
(Zitnick and Kanade, 2000) in (Scharstein and Szeliski, 2002). The results are in the range of the best approaches in (Scharstein and
Szeliski, 2002), while the numerical complexity of our approach compares favorably to these approaches. Our main contribution lies in
analyzing the different means for improvement including their performance gain. The most important are the use of symmetric support,
the combination of absolute differences and (normalized) cross-correlation weighted by the strength of the horizontal gradient, the use
of auto-correlation to estimate the significance of a matching score, the preference for small disparities to obtain more meaningful
results for occluded regions, and the enforcement of the alignment of disparity and image gradient. Results for additional images with
the same set of parameters show that the means are applicable to a wider range of imagery.

1 INTRODUCTION

Though disparity estimation from stereo imagery has received
considerable attention since the first days of computer vision,
there is still not one or even a set of standard approaches which
can deal with a broad range of imagery. An excellent recent
survey (Scharstein and Szeliski, 2002) has grouped existing ap-
proaches into a taxonomy and introduced an evaluation metric as
well as test data to compare different approaches. For previous
work we therefore refer to this survey and introduce only the most
recent approaches and compare them to our ideas and results.

(Zitnick and Kanade, 2000), that our work based on, refers to
work proposed at the end of the seventies (Marr and Poggio,
1976, Marr and Poggio, 1979). The basic idea is to employ ex-
plicitly stated global constraints on uniqueness and continuity of
the disparities. While (Marr and Poggio, 1976, Marr and Poggio,
1979) have used two-dimensional (2D) regions to enforce conti-
nuity by fusing support among disparity estimates, (Zitnick and
Kanade, 2000) employs 3D support regions. Matching scores are
calculated for a disparity range (search width) and then stored in
a 3D array made up of image width and height as well as dispar-
ity range. This array is filtered with a 3D box-filter to obtain the
local support for a match from all close-by matches.

Assuming opaque, diffuse-reflecting surfaces, the uniqueness
constraint requires that on one ray of view only one point is vis-
ible. This implies an inhibition which is realized by weighting
down all scores besides the strongest. Support and inhibition are
iterated. Thereby, the information is propagated more globally.
We have chosen (Zitnick and Kanade, 2000) because it can deal
with strong occlusions and large disparity ranges and have ex-
tended it by the following means:

• The smoothness of the output is improved by sub-pixel esti-
mation. By a recursive implementation of the 3D box-filter
we have sped up the computation. We determine the conver-
gence by calculating a difference image and setting a thresh-
old on its variance.

• Opposed to the original approach, we employ symmetric
support. This considerably improves the results.

• As proposed by (Scharstein and Szeliski, 2002), we use for
the matching scores besides cross-correlation absolute dif-
ferences with truncation. We have extended this by combin-
ing both. The combination is based on the idea that correla-
tion works best for horizontally textured regions. Therefore,
we weight correlation higher for a large horizontal gradient.
As we are looking for unambiguous matches, the match-
ing scores are weighted down when a special type of auto-
correlation, which is only evaluated outside the matching
window and inside the search width, is large.

• It was found that, as expected, using color improves the re-
sult. We have introduced a small preference for smaller dis-
parities. This is due to the fact, that occluded regions have a
smaller disparity than their occluding regions. By the prefer-
ence for smaller disparities we increase the probability, that
occluded regions, for which no correct match is possible,
obtain correct, smaller disparities.

• By combining image gradient and disparity gradient to con-
trol the amount of smoothing as proposed by (Zhang and
Kambhamettu, 2002), we avoid blurring disparity disconti-
nuities and the elimination of narrow linear structures.

• Finally, determining occlusions and reducing the probabil-
ities for large disparities in these regions is another means
to obtain more meaningful, smaller disparities in occluded
regions.

The paper is organized as follows. First we give a short ac-
count of cooperative disparity estimation as proposed in (Zitnick
and Kanade, 2000). Section 3 presents the evaluation metric of
(Scharstein and Szeliski, 2002) and our results for the four image
pairs obtained with one and the same parameter set. In Section
4 we present the means for improvement in more detail. We an-
alyze them by assessing their performance gain. In Section 5
additional results are presented. The paper ends up with conclu-
sions.

2 COOPERATIVE DISPARITY ESTIMATION

The main idea of the cooperative disparity estimation of (Zitnick
and Kanade, 2000) is a cooperation between support and inhibi-
tion (cf. Fig. 1, left). The support region is a 2D-region or usually
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results compares favorably with other approaches presented
in the online version of (Scharstein and Szeliski, 2002) a
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a 3D-box. All matching scores, derived, e.g., by (normalized)
cross-correlation, in this box corroborate to generate a disparity
map which is locally continuous. When employing a 3D-box,
sloped regions are modeled implicitly.
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Figure 1: Support and inhibition

Inhibition enforces the uniqueness of a match. Assuming opaque
and diffuse-reflecting surfaces, a ray of view emanating from
a camera will hit the scene only at one point. The idea is to
gradually weight down all matches on a ray of view besides the
strongest. For a stereo pair there are two rays (cf. Fig. 1, right).
We store the matching scores in a 3D array where for every pixel
in the left/reference image the matching score is stored as a voxel.
Therefore, for the left image the ray of view is a column in the
2D-slice of width and disparity. Because we work in disparity
and not in depth space, the ray of view of the right image con-
sists of the 45◦ left-slanted diagonal through the pixel of interest.
Putting everything together, the support Sn for a pixel at row r
and column c with disparity d is defined as

Sn(r, c, d) =
∑

(r′,c′,d′)∈Φ

Ln(r + r′, c + c′, d + d′) , (1)

with Ln the score for the preceding iteration and Φ the support
region. The new score for iteration n + 1 is obtained as

Ln+1(r, c, d) =

⎛⎜⎝ Sn(r, c, d)∑
(r′′,c′′,d′′)∈Ψ

Sn(r′′, c′′, d′′)

⎞⎟⎠
α

∗L0(r, c, d) , (2)

with Ψ the union of the left and right inhibition region and α an
exponent controling the speed of convergence. α has to be chosen
greater than 1 to make the scores converge to 1. The multiplica-
tion with the original matching score L0 avoids hallucination in
weak matching regions. Finally, for each pixel of the left image
the disparity is chosen which has the maximum score. Practi-
cally, it is important to correct the inhibition value for the fact
that on the left and the right side of the image a number of pixels
depending on the search width are not matched and, therefore, do
not contribute to the inhibition.

3 EVALUATION

For the evaluation we used the data and the code available at
www.middlebury.edu/stereo (cf. Figure 2) employing the
search widths given there. The measures used in (Scharstein and
Szeliski, 2002) and here comprise the number of bad pixels, i.e.,

pixels which are further away from the ground truth map than a
tolerance δd. As in (Scharstein and Szeliski, 2002), we also use
δd = 1.0 and the following measures:

• bad pixels nonocc (all) – BO: % bad pixels in non-occluded
regions. Used as overall performance measure.

• bad pixels textureless (untex.) – BT : % bad pixels in tex-
tureless regions.

• bad pixels discont (disc.) – BD: % bad pixels near disconti-
nuities

For sub-pixel estimation a parabola involving the matching scores
of the voxels having a smaller (d− 1) and larger (d+1) disparity
than the given disparity for a pixel d (with ln(d) = Ln(r, c, d))
is used (−0.5 ≤ ∆d ≤ 0.5):

∆d =
ln(d + 1) − ln(d − 1)

2(2ln(d) − ln(d + 1) − ln(d − 1))
. (3)

Tsukuba Sawtooth

Venus Map

Figure 2: Images (www.middlebury.edu/stereo)

The results presented in Figures 3, 4, and 5, for the first and the
last image also compared to their ground-truth, give an indication
of the quality obtained.

Figure 3: Disparities for Tsukuba (left) and differences to ground
truth (right) – white: disparities more than 1 pixel too large; grey:
disparities more than 1 pixel too small.

From Table 1 it can be seen that the evaluation of the
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Figure 4: Disparities for Sawtooth (left) and Venus (right) includ-
ing sub-pixel estimation

Figure 5: Disparities for Map including sub-pixel estimation
(left) and differences to ground truth (right) – white: disparities
more than 1 pixel too large; grey: disparities more than one pixel
too small.

www.middlebury.edu/stereo. As required there, only one pa-
rameter set given in Table 3 was used. When summing up the
rank for all images and all evaluation criteria we obtain 63 for
the pixel precise disparities and are ranked number three in the
individual result page of the online version of (Scharstein and
Szeliski, 2002) as of April 3, 2003. The first ranked approach has
a rank of 52, the second of 55, and the fourth to seventh approach
a rank of 68, 72, 74, and 75. Run time for all images is about 102
seconds on a 2.5 GHz PC. This time is better than those reported
for the seventh (2706 seconds) and fifth (528 seconds) perform-
ing algorithms in (Scharstein and Szeliski, 2002). The times for
Tsukuba, Sawtooth, Venus, and Map are 22, 28, 36, and 16 sec-
onds, respectively.

For the interpretation of the results with sub-pixel estimation,
which were obtained with the same parameters as above, one
needs to consider that while the ground-truth for Tsukuba is pixel
precise, the ground-truth for the rest is sub-pixel precise. As the
distance for the evaluation is fixed to one pixel and as we restrict
|∆d| ≤ 0.5, for Tsukuba sub-pixel estimation can only result
into an equal or lower performance. For the other three images
the performance can improve, as it does. The same is also true
for the root mean square (RMS) error given in Table 2. That the
result for Tsukuba can only degrade for sub-pixel precise estima-
tion is the reason why we concentrate on pixel precise disparity
estimation for the rest of the paper.

subpixel
all untex. disc. all untex. disc.

Tsukuba 1.674 0.773 9.676 2.247 1.587 11.707
Sawtooth 1.217 0.176 6.908 0.725 0.033 6.828
Venus 1.043 1.073 13.6812 0.782 0.682 10.668
Map 0.295 0.00 3.656 0.244 0.00 3.366

Table 1: Percentage of bad pixels with all means for improvement
included (right three columns: sub-pixel precise results). The
subscripts of the percent values indicate the rank of each value
according to the online version of (Scharstein and Szeliski, 2002).

subpixel
all untex. disc. all untex. disc.

Tsukuba 0.83 0.63 1.74 0.87 0.56 1.90
Sawtooth 0.61 0.31 1.70 0.56 0.24 1.67
Venus 0.47 0.44 1.31 0.38 0.35 1.27
Map 0.99 0.42 3.44 0.94 0.26 3.36

Table 2: RMS error with all means for improvement included
(right three columns: sub-pixel precise results)

Size matching 5 × 5 × 1
Size support 11 × 11 × 3
Truncation Value 4 gray values
Threshold for convergence 0.005 * search width
Threshold for mixing scores 45 gray values
Preference for larger disparities 0.05 * search width
Number iterations for occlusion 2

Table 3: Parameters for the results in the figures and tables above

4 MEANS FOR IMPROVEMENT

In the remainder of the paper we illustrate the means and their
performance gain. The two basic means presented in the first
subsection only speed up the processing. The rest of the means
are explained using Tsukuba as the running example in separate
subsections. Their gain is assessed in the final subsection by com-
paring the evaluation results when excluding the respective means
from the processing to the result when all means are used.

4.1 Recursive 3D Box-filter and Convergence Determina-
tion

Filtering with a 3D box-filter based on simple summation is
highly redundant. To get rid of this redundancy, we use a standard
recursive filter. For it we separate the filter into one-dimensional
(1D) staffs and 2D sheets. By adding pixels on top of each other
we generate staffs (cf. Fig. 6). From them we build sheets and
finally from the sheets the box. The update is done recursively.
To filter with a translated box, instead of adding sheets we add a
(new) sheet on one side and subtract the (old) sheet on the other
side. The same is done for the sheets and the staffs. By this means
the complexity becomes independent of the size of the box.

filter box

sheet boxstaff

subtract add

width

Update

he
ig

ht

di
sp

ar
ity

Generation

Figure 6: Separation of 3 × 3 × 3 box: Generation and update

The performance gain depends on the size of the 3D-box, but is
considerably large for meaningful box sizes. For Tsukuba of size
384 × 288 pixels and a search width of 15 pixels, one iteration
of the simple algorithm on a 2.5 GHz PC takes 3.2 seconds for a
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11 × 11 × 3 box. The separated algorithm needs 0.10 seconds.
It is interesting to compare this with the times for the inhibition.
For Tsukuba the inhibition takes 0.30 seconds per iteration. If one
substitutes the square, i.e., α = 2, for the general exponential, it
reduces to 0.13 seconds. Because we found that this gives also
the best results in nearly all cases, we have only used α = 2 in
our experiments.

The meaningful number of iterations varies for different images.
It proved useful to decide about the number of iterations by con-
vergence determination. For the latter also a parameter is needed,
but empirical investigations have shown that it is relatively inde-
pendent of the images at hand. To determine the convergence, we
compute the difference image of the disparity maps from the last
two iterations and compute the standard deviation σ. Empirically
we found that a good threshold for σ is 0.005 of the search width.
This results in 34 iterations for Tsukuba, 23 for Sawtooth, 30 for
Venus, and 28 for Map.

4.2 Symmetric Support

Older experiments conducted by us showed that weighting down
the right inhibition improves the performance. Recently, we were
hinted that this asymmetry might stem from asymmetric support.
It was immediately confirmed that this is correct. Our experi-
ments verify that a symmetric support, where a box and a tilted
box are added as shown in Figure 7, considerably improves the
performance (cf. below). Also the tilted box is implemented re-
cursively by adding / subtracting staffs from the box.

di
sp

ar
ity

ray of view
right imageleft image

width

he
ig

ht

Figure 7: Symmetric support

4.3 Combination of Absolute Differences and Correlation

As suggested by (Scharstein and Szeliski, 2002), we have based
the correlation scores on absolute differences. Experiments
showed that the performance for squared differences was in
nearly all cases worse than for absolute differences. We also
found that the use of a minimum filter mimicking shiftable win-
dows degraded the performance. This is probably due to the
small window sizes that we use (cf. Table 3). For the absolute
differences we truncate the difference value with a value trunc.
The matching score for absolute differences is scoreabs diff =
1 − abs diff/trunc, with 0 ≤ score ≤ 1.

When looking at results based on (normalized) cross-correlation
compared to results where absolute differences were employed,
we got the idea that the failure modes seem to be different and
that it might be useful to combine both. The combination is done
by

scorecomb =
scoreabs diff + weight ∗ scorecorr

1 + weight
(4)

with weight =
horiz grad

threshold for mixing scores
. (5)

A large horizontal gradient horiz grad (cf. Figure 8 left) in-
creases the probability for a good match for cross-correlation,
because cross-correlation works best for strongly textured regions
and the matching is done in horizontal direction.

In addition to the combination, a special type of auto-correlation
auto corr (cf. Figure 8 right) is used to indicate potentially false
matches. It is determined as the maximum value of correlation
along the horizontal line ranging from outside the matching win-
dow to the search width. If this auto-correlation is large, it means
that there are similar structures already in the reference image
and, therefore, the match is highly likely to be ambiguous also
in the other image. The auto-correlation is used to weight down
the matching score by score = score ∗ (1 − 0.5 ∗ auto corr).
Both, horizontal gradient and auto-correlation are smoothed with
a Gaussian.

Figure 8: Horizontal gradient (left); Maximum auto-correlation
along the horizontal line ranging from outside the matching
window to the search width (right). Both images are slightly
smoothed with a Gaussian.

4.4 Use of Color and Preference for Smaller Disparities

As some of the images of the dataset of (Scharstein and Szeliski,
2002) are colored, it is useful to employ this information. For the
absolute differences we take the average of the individual results
for the three colors. As we found that color does not help too
much for the correlation, we correlated only the average images
of the colors.

As noted in (Zhang and Kambhamettu, 2002), there is a tendency
of the cooperative approach to fatten regions with larger dispari-
ties. We counteract this by reducing the matching scores by (d is
disparity)

scorered = score ∗ (1− d ∗ preference

search width
(6)

∗(1 − 0.5 ∗ auto corrr)) .

The reduction of the matching score is motivated as follows: Oc-
cluded regions have a smaller disparity than their occluding re-
gions. As there is no correct matching possible for occlusions,
introducing a slight bias towards smaller disparities increases the
probability, that occluded regions obtain correct, smaller dispar-
ities. For preference a value of 0.05 was found suitable. By
reducing the matching score there is a tendency for regions with
a large auto-correlation (cf. above) to obtain a wrong, too small
disparity value. Therefore, we reduce the preference with the
same factor as above.

4.5 Enforcing the Alignment of Image and Disparity Gradi-
ents

In many cases the materials or surface characteristics are consid-
erably different at both sides of a disparity discontinuity. This
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results in a typical alignment of large disparity gradients with
strong image gradients. While in (Zhang and Kambhamettu,
2002) the image is segmented into several regions and the sup-
port is restricted to these regions, we take a more conserva-
tive policy. Additionally to the support size given in Table 3
(boxsupp size) we smooth the image with a 3 × 3 × 3 box filter
(box333) and mix the results according to the combined strength
of gradientcomb = gradientimage ∗ gradientdisparity/255.
This combined gradient is then smoothed by a Gaussian. Both
gradients are determined by 3×3 Sobel-filters and scale from 0 to
255. An adequate weight and threshold was empirically found to
be the combination of the combined gradient with half the search
width:

weight =
gradientcomb

0.5 ∗ search width
. (7)

We truncate values below 1. The combined blurring reads

r(boxcomb) =
r(boxsupp size) + weight ∗ r(box333)

1 + weight
, (8)

where r(boxxxx) stands for the result of filtering with the respec-
tive box-filter. The smaller box333 is only employed for values
above the half search width. These are the white regions in Figure
9. As can be seen, the regions with reduced smoothing fit better
to the actual disparity continuities after convergence (right).

Figure 9: Regions where the smoothing of the image function is
reduced due to large image and disparity gradients after 5 (left)
and after 30 (right) iterations

4.6 Determination of Occlusions and Sharpening of Dispar-
ity Discontinuities

The tendency to estimate too large disparities (cf. also Sec-
tion 4.4) is especially true for occluded regions. (Egnal and
Wildes, 2002) describes different approaches to determine oc-
clusions. An idea is to use one of these approaches and re-
duce the probability of larger disparities for occluded regions, for
which no matching is possible, and which have a smaller dis-
parity than their occluding regions. The determination of occlu-
sions works best when the result is already cleaned from gross
errors. Empirically, the optimum procedure was found to let the
basic algorithm converge first, and then to multiply L0(r, c, d) by
(search width−d)/search width. This reduces the energy or
probability of the original matching scores for larger disparities.
They influence the process via equation (2). The reduction of the
original matching scores is done several times. For the experi-
ments in this papers it is done two times. After the reduction the
algorithm runs until σ falls again below the given threshold.

Because the disparities are already smooth when the algorithm
has converged for the first time, it is sufficient to compute an in-
dication for an occluded region by what in (Egnal and Wildes,

2002) is termed occlusion constraint. Here it is determined by
the predicate ((d − docc) + (c − cocc)) < 0. d and c are the
disparity and the column coordinate of the point under investiga-
tion. docc and cocc are the disparity and the column coordinate
of the preceding point when starting from the left side of the im-
age if no occluding point was found yet. If an occluding point
was found, it is only updated to be the preceding point when the
above predicate is not true any more. To obtain compact regions,
morphological opening and closing with circular structuring el-
ements with a radius of 2.5 pixels are used. In Figure 10 the
occlusions determined for the final convergence of the algorithm
are shown.

Figure 10: Occluded regions

4.7 Assessment of the Gain of the Means

Table 4 gives in the first row as reference the results when all
means are employed. In the other rows results which are consid-
erably worse than the reference are shown in bold, while results
which are considerably better are marked in italics.

For the symmetric support in the second row, the result is clear-
cut. Apart from the textureless regions in Venus, there is an im-
provement nearly everywhere.

The third row shows the results for absolute differences with the
optimum truncation value of 4 gray values. As can be seen, the
performance gain is considerable for the combination for all im-
ages besides Tsukuba. Our interpretation of this is as follows:
Absolute differences make use of brightness differences even for
weakly textured regions. This is useful only for constant lighting
conditions, similar viewing angles, and well-behaved reflection
functions. Yet, it is an advantage compared to (normalized) corre-
lation which is invariant to differences in brightness and contrast.
It can therefore produce a high score when matching a smooth
bright to a smooth or even textured dark region when the weak
texture happens to be similar, even though this is practically im-
plausible. On the other hand, by restricting ourselves to rela-
tively small truncation values, we do not make full use of heavily
textured regions by the absolute differences, where correlation
works best.

From the fourth row it can be seen, that auto-correlation helps,
though mostly for Tsukuba and Venus. Both have strong repeti-
tive textures in the form of the books for Tsukuba and the rows
of letters for Venus.

The fifth row shows, that color helps. Yet, for Venus there is
ample room for improvement. This might stem from the fact that
Venus is partly relatively greenish and we only sum up the color
information without weighting it according it to contrast.

From the sixth row one can see that no preference for small dis-
parities results in a noticeable degradation of the overall results
especially for Tsukuba, while for Map there is only a small im-
provement and for the other images there is none.
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Tsukuba Sawtooth Venus Map
Means all untex. disc. all untex. disc. all untex. disc. all untex. disc.
everything included 1.67 0.77 9.67 1.21 0.17 6.90 1.04 1.07 13.68 0.29 0.00 3.65
no symmetric support (4.2) 2.06 1.19 11.90 1.49 0.43 10.29 0.97 0.67 14.67 0.39 0.00 4.63
absolute differences only (4.3) 1.73 0.69 9.84 1.42 0.20 6.97 1.32 1.14 10.38 2.53 1.19 16.82
without use of auto-correlation (4.3) 1.99 1.01 11.42 1.22 0.16 6.82 1.17 1.37 15.34 0.29 0.00 3.68
no color used (4.4) 2.15 1.14 12.39 1.40 0.44 7.01 0.82 0.71 10.16 0.29 0.00 3.65
no preference for small disparities (4.4) 2.05 1.18 11.78 1.23 0.19 7.06 1.18 1.34 14.24 0.27 0.00 3.24
no alignment of gradients (4.5) 2.82 1.53 16.07 1.20 0.18 6.92 1.08 1.09 13.80 0.51 0.24 6.63
no occlusion modeling (4.6) 1.67 0.77 9.67 1.22 0.17 6.87 1.05 1.10 13.76 0.39 0.71 3.68

Table 4: Comparison of Different Means for Improvement: Percentage of bad pixels of results without using the respective means
(worse results are marked in bold and better results in italics)

The improvement by means of the enforcement of the alignment
of image and disparity gradient in the sixth row is extremely large
for Tsukuba and considerable for Map.

Modeling occlusion in the last row only helps for Map. Our ex-
perience shows that for other parameter settings the modeling
can result in a small, yet noticeable improvement for all images.
Though, the importance of this means is still not absolutely clear.

5 ADDITIONAL RESULTS

To show that our means for improvement and the pa-
rameters used are not only valid for the data set at
www.middlebury.edu/stereo, we experimented with other
image pairs with the same parameters as given in Table 3. The
only modification employed was to make the absolute differences
invariant against a different average brightness of the image win-
dows. This had to be done, because, opposed to the data set at
www.middlebury.edu/stereo, many other image pairs have a
significantly different gray value for homologous windows.

For the image pair Sport (cf. Figures 11 and 12) from
INRIA’s Syntim image database one can see that the ap-
proach works reasonably well for a relatively large dispar-
ity range (45 pixels search width for the epipolar resam-
pled image Sport reduced to 267 × 271 pixels). The im-
age pair Kitchen (cf. Figures 13 and 14) stems from the web
page http://research.microsoft.com/virtuamsr/virtuatour.html at
Microsoft maintained by Antonio Criminisi and Phil Torr. The
results show the high quality achievable with the improved ap-
proach. Similar results were obtained also for a larger number of
other images.

Figure 11: Input images for Sport from INRIA’s Syntim image
database

6 CONCLUSIONS

Ranking our results in the frame of the on-
line version of (Scharstein and Szeliski, 2002) at
www.middlebury.edu/stereo shows that we have ob-
tained a relatively good performance also compared to the run

Figure 12: Result (occluded regions in red / light gray) with the
same parameters as in Table 3 (left) and visualization (occluded
regions in black) with trifocal tensor according to (Avidan and
Shashua, 1998) (right)

Figure 13: Input images for Kitchen from web page Torr and
Criminisi

Figure 14: Result (left) and visualization (right); occlusions and
parameters cf. Fig. 12.

time of our algorithm. On one hand, we have to admit that we
have fine-tuned our approach for an optimum performance with
the given data set. On the other hand, the last section shows that
we also obtain reasonable results for other image pairs using the
same parameters.

The results reported in (Sun et al., 2002) are partly better than
that presented in this paper. Though, it takes 288 seconds on a
500 MHz PC for Tsukuba, i.e., more than double as long when
scaled to 2.5 GHz. Graph cuts (Boykov et al., 2001, Kolmogorov
and Zabih, 2001) with and without the handling of occlusions
also have a similar or better performance than our algorithm es-
pecially in combination with the fast max-flow algorithm. Yet, an
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interesting question would be if it might be possible to reach an
improvement by some of our means for these algorithms. Espe-
cially the combination of correlation and absolute differences as
well as using the auto-correlation function to characterize proba-
bly unreliable regions might be fruitful in terms of performance
as well as speed. A similar reasoning applies for fast though not
absolutely high quality algorithms such as (Hirschmüller et al.,
2002). (Zhang and Kambhamettu, 2002) has an advantage for
depth discontinuities due to a more advanced modeling of the im-
age function, but it could also benefit from our more wide range
of means of improvements.

Ways to proceed are for instance to make use of highly reliable
points as in (Lhuillier and Quan, 2002) to initialize the cooper-
ation process, the use of more images as in (Koch et al., 1999,
Kolmogorov and Zabih, 2002) or (Leloǧlu et al., 1998), where
are merging of pairs is done in object space based on relaxation,
or to locally optimize the window size and shape (Veksler, 2002).
We have started to project the results into a third image by means
of the trifocal tensor to obtain more evidence especially for oc-
cluded regions.
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