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ABSTRACT

This paper introduces a new approach to automatic vehicle detection in monocular high resolution aerial images. The extraction relies
upon both local and global features of vehicles and vehicle queues, respectively. To model a vehicle on local level, a 3D-wireframe
representation is used that describes the prominent geometric and radiometric features of cars including their shadow region. The
model is adaptive because, during extraction, the expected saliencies of various edge features are automatically adjusted depending on
viewing angle, vehicle color measured from the image, and current illumination direction. The extraction is carried out by matching
this model ”top-down” to the image and evaluating the support found in the image. On global level, the detailed local description is
extended by more generic knowledge about vehicles as they are often part of vehicle queues. Such groupings of vehicles are modeled by
ribbons that exhibit the typical symmetries and spacings of vehicles over a larger distance. Queue extraction includes the computation
of directional edge symmetry measures resulting in a symmetry map, in which dominant, smooth curvilinear structures are searched
for. By fusing vehicles found using the local and the global model, the overall extraction gets more complete and more correct. In
contrast to most of the related work, our approach neither relies on external information like digital maps or site models, nor it is limited
to very constrained environments as, e.g., highway scenes. Various examples of complex urban traffic scenes illustrate the applicability
of this approach. However, they also show the deficiencies which clearly define the next steps of our future work.

1 INTRODUCTION

This paper deals with automatic detection and counting of cars
in high resolution aerial imagery. Research on this topic is mo-
tivated from different fields of application: Traffic-related data
play an important role in urban and spatial planning, e.g., for
road planning and for estimation / simulation of air and noise
pollution. In recent years, attempts have been made to derive
traffic data also from aerial images, because such images belong
to the fundamental data sources in many fields of urban planning.
Therefore, an algorithm that automatically detects and counts ve-
hicles in aerial images would effectively support traffic-related
analyses in urban planning. Furthermore, because of the growing
amount of traffic, research on car detection is also motivated from
the strong need to automate the management of traffic flow by in-
telligent traffic control and traffic guidance systems. Other fields
of application are found in the context of military reconnaissance
and extraction of geographical data for Geo-Information Systems
(GIS), e.g., for site model generation and up-date.

This paper is organized as follows. Section 2 discusses related
work on automatic car detection and counting in aerial imagery.
The vehicle model underlying our detection algorithm will be de-
veloped in Sect. 3. Then, Sect. 4 outlines details of the algorithm
and Sect. 5 discusses results achievable with our approach.

2 RELATED WORK

Related work on vehicle detection can be distinguished based on
the underlying type of modeling used: Several authors propose
the use of an appearance-based, implicit model (Ruskoné et al.,
1996, Rajagopalan et al., 1999, Schneiderman and Kanade, 2000,
Papageorgiou and Poggio, 2000). The model is created by exam-
ple images of cars and typically consists of grayvalue or texture
features and their statistics assembled in vectors. Detection is

then performed by computing the feature vectors from image re-
gions and testing them against the statistics of the model features.
The other group of approaches incorporates an explicit model that
describes a vehicle in 2D or 3D, e.g., by a filter or wire-frame rep-
resentation (Burlina et al., 1995, Tan et al., 1998, Haag and Nagel,
1999, Liu et al., 1999, Liu, 2000, Michaelsen and Stilla, 2000,
Zhao and Nevatia, 2001, Hinz and Baumgartner, 2001, Moon et
al., 2002). In this case, detection relies on either matching the
model ”top-down” to the image or grouping extracted image fea-
tures ”bottom-up” to construct structures similar to the model. If
there is sufficient support of the model in the image, a vehicle is
assumed to be detected. Only a few authors model vehicles as
part of queues. (Burlina et al., 1997) extract repetitive, regular
object configurations based on their spectral signature. In their
approach, the search space is limited to roads and parking lots
using GIS-information. This seems necessary since the spectrum
will be heavily distorted if adjacent objects gain much in influ-
ence — even if the spectrum is computed for quite small images
patches. In (Ruskoné et al., 1996) and (Michaelsen and Stilla,
2001) vehicle hypotheses extracted by a neural network classifier
and a ”hot spot detector”, respectively, are collinearly grouped
into queues while isolated vehicle hypotheses are rejected. Since
the queues are not further used to search for missed vehicles, this
strategy implies that the vehicle detector delivers an highly over-
segmented result, so that grouping is able to separate correct and
wrong hypotheses. To the best of our knowledge an approach
making use of global and local vehicle features in a synergetic
fashion for detecting vehicles on downtown streets has not been
presented so far.

3 MODEL

3.1 Vehicle Model

Because of the apparent closeness of different objects in urban
areas, objects impose strong influence on each other, e.g., trees
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Figure 1: Vehicle model.

may occlude cars partially, buildings cast shadows, materials like
glasses or varnish may cause reflections or specularities on cars,
etc. Since such influences mostly appear in form of local radio-
metric disturbances, a model emphasizing a structural description
of a vehicle — as an explicit model — seems much more robust
than one relying mainly on radiometry as the implicit model does.
Another disadvantage of the implicit approach is, that the per-
formance is completely dependent on the training data, while it
cannot be assured that the training data capture changes in illumi-
nation, viewpoint, and possible influences caused by neighboring
objects correctly. In contrast, explicit modeling better allows to
focus on the fundamental and robust features of cars and, further-
more, it better allows to employ a hierarchy of levels of detail.
However, because of the small size of vehicles, it is clear that a
very detailed model is necessary in order to avoid misdetections
of objects that are fairly similar to vehicles.

In our approach, we use an explicit model that consists mainly
of geometric features and also some radiometric properties. Ge-
ometrically, a car is modeled as 3D object by a wire-frame rep-
resentation. Hence, an accurate computation of the car’s shadow
projection derived from date, daytime, and image orientation pa-
rameters is possible and added to the model. The model fur-
ther contains substructures like windshield, roof, and hood (see
Fig. 1). As radiometric feature, color constancy between hood
color and roof color is included. Please note, that color constancy
is a relative measure and therefore independent of uniform illu-
mination changes. The only absolute radiometric feature used is
the darkness of the shadow region.

The main difference of our vehicle model compared to many
other approaches, however, is that the model is adaptive regard-
ing the expected saliency of edge features. Consider, for exam-
ple, the edge between a car’s hood and windshield. In case of a
bright car we expect a strong grayvalue edge since a windshield
is usually very dark, while in case of a dark car the grayvalue
edge may disappear completely. Also the viewing angles rela-
tive to the respective vehicle orientation affect the significance of
certain edges (see also Fig. 2). To accommodate this, we model
the expected saliency of a particular feature depending on vehicle
color, vehicle orientation, view point (position in the image), and
sun direction. View point and sun direction are derived from the
image orientation parameters and vehicle orientation and color
are measured from the image.

A disadvantage of the detailed description is, that a large number
of models is needed to cover all types of vehicles. To overcome
this problem a tree-like model hierarchy may be helpful having a
simple 3D-box model at its root from which all models of higher
level of detail can be derived subsequently. Such a hierarchy has
not been implemented yet.

(a) Bright car (b) Model adapted to bright car

(c) Dark car (d) Model adapted to dark car

Figure 2: Color-adaptive model (aligned to gradient direction):
Bold model edges = high expected saliency, gray = low, thin = no.

3.2 Vehicle Queue Model

Due to the high geometric variability of vehicles, it can be hardly
assured that the detailed model described above covers all types
of vehicles. In some cases, also for a human observer, local fea-
tures are insufficient to identify a vehicle without doubt (see, e.g.
Fig. 2 c). Only provided the contextual information that such a
vehicle stands on a road or is part of a queue makes it clearly
distinguishable from similar structures. For these reasons our
queue model incorporates more generic and more global knowl-
edge. Constraints of the detailed local model are relaxed and, in
compensation for this, the global consistency of features is em-
phasized. More specifically, typical local geometric and radio-
metric symmetries of vehicles are exploited and, in combination
with rough dimensions and spacings of vehicles, they are con-
strained to form an elongated structure of sufficient length and
smoothness (see Fig. 3). In summary following features are used:

• Geometric and radiometric symmetry across queue direc-
tion.

• Short, orthogonally intersecting structures characterizing the
typical ”ladder-like” shape of a vehicle queue.

• Approximately constant width.

• Sufficient length.

Figure 3: Queue model.
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(a) Image part (b) Selected positions for matching (c) Gradient amplitudes for computing score

Figure 4: Intermediate steps during matching

4 DETECTION

To make use of the supplementary properties of the local and
global model, following scheme has been implemented: First,
the algorithms for vehicle detection (Sect. 4.1) and vehicle queue
detection (Sect. 4.2) are run independently. Then, the results of
both are fused and queues with enough support from the detailed
vehicle detection are selected and further analyzed to recover ve-
hicles missed during vehicle detection (Sect. 4.3). Other detected
vehicles, yet not being part of a queue, are kept without deeper
analysis.

4.1 Vehicle Detection

Vehicle detection is carried out by a top-down matching algo-
rithm. A comparison with a grouping scheme that groups im-
age features such as edges and homogeneous regions into car-
like structures has shown that matching the complete geometric
model top-down to the image is more robust. A reason for this
is that, in general, bottom-up grouping needs reliable features as
seed hypotheses which are hardly given in the case of such small
objects like cars (cf. (Suetens et al., 1992)). Another disadvan-
tage of grouping refers to the fact that we must constrain our de-
tection algorithm to monocular images, since vehicles may move
within the time of two exposures. Reconstructing a 3D-object
from monocular images by grouping involves much more ambi-
guities than matching a model of the object to the image. The
steps of detection can be summarized as follows:

• Extract edge pixels and compute gradient direction.
• Project the geometric model including shadow region to edge

pixel and align the model’s reference point and direction
with the gradient direction, see Fig. 2 b) and d) for illus-
tration.

• Measure reference color / intensity at roof region.
• Adapt the expected saliency of the edge features depending

on position, orientation, color, and sun direction.
• Measure features from the image: edge amplitude support

of each model edge, edge direction support of each model
edge, color constancy, darkness of shadow.

• Compute a matching score (a likelihood) by comparing mea-
sured values with expected values.

• Based on the likelihood, decide whether the car hypothesis
is accepted or not.

In the following, the evaluation measures involved are explained
more in detail. Figures 4 and 5 illustrate the individual steps of
matching.

The match of an edge of the wire-frame model with the underly-
ing image is calculated by comparing directional and positional
features. Let ∆αi be the orientation difference between the gra-
dient ∇Ii at a certain pixel i and the normal vector of the model
edge and, furthermore, let di be the distance between this pixel
and the model edge, then the score Se [0 ; 1] for the match of a
model edge e with n pixels involved is computed by

Se = 1 − 1
n

n∑
i= 1

| Ee − 1
2 (Ai + Di) |

with

Ai = π− αi
π

· ‖∇Ii‖
c1

, Di = (1 − di
r

) · ‖∇Ii‖
c1

,

and with Ee [0 ; 1] being the expected saliency of the model edge,
r being the maximum buffer radius around the model edge, and
c1 being a constant to normalize the gradient magnitude ‖∇Ii ‖
into the range [0 ; 1]. Finally, the quality of the geometric match
of the complete model is calculated as the length-weighted mean
of all matching scores Se. Furthermore, darkness and homogene-
ity Ms of a shadow region s are evaluated by

Ms =
√(

1 − µs
c2

)
·
(
1 − σs

c3

)
,

with µs and σs being mean and standard deviation of an image
region and c2, c3 being normalization constants.

To speed up runtime of matching, a number of enhancements and
pruning steps have been employed. The most important ones are:

• To avoid redundant computations for projecting models into
image space, a database containing all possible (projected)
2D models is created beforehand which is accessed via in-
dices during detection. Since image scale and sun direction
are approximately constant for a given scene, the only free
parameters are model orientation and x, y position in the
image. A reasonable discretization for these variables is de-
rived automatically from image scale and average vehicle
size.

• The model is projected only to those positions where edge
amplitude has passed a local non-maximum and noise sup-
pression. Though, for calculating the matching score, all
pixels are taken into account (see Fig. 4).

• The calculation of features is ordered in such a way, that
implausible hypotheses appear yet after a few computations,
thus allowing to abort matching immediately.

Figure 5 shows the final result of vehicle detection using the de-
tailed local model.
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Figure 5: Detected vehicles: White wire-frame = Vehicles de-
clared as dark during matching and vice-versa.

4.2 Vehicle Queue Detection

Vehicle queue detection is based on searching for one-vehicle-
wide ribbons that are characterized by:

• Significant directional symmetries of grayvalue edges with
symmetry maxima defining the queue’s center line.

• Frequent intersections of short and perpendicularly oriented
edges with homogeneous distribution along the center line.

• High parallel edge support at both sides of the center line.

• Sufficient length.

At first, a ”directional symmetry map” is created. The directional
symmetry Sd(i, j) of a pixel at position i, j is calculated using a
rotating window with a local co-ordinate system uφ, vφ of dimen-
sions 2m + 1 (length) and 2n + 1 (width). For each orientation
φ of the window, the average symmetry of 2m + 1 cross sections
of the gradient amplitude image is computed and, thereafter, the
orientation d yielding maximum symmetry is selected, i.e:

Sd =max
φ=

0...π

⎧⎨⎩1−
1

2n+1
(2m+ 1)c4

i+ m∑
uφ=
i−m

j+ n∑
vφ=
j+1

(‖∇Iuφ,vφ‖−‖∇Iuφ,−vφ‖)2
⎫⎬⎭

with c4 being a constant to normalize Sd into the range [0 ; 1].
Furthermore, n can be derived from the approximate vehicle width
and m is related to the expected minimum length of a straight
vehicle queue. Linking adjacent pixels of high symmetry and
similar direction into contours yields candidates for queue cen-
ter lines. These candidates are further evaluated and selected by
checking their length and straightness as well as the frequency
and distribution of short and orthogonally intersecting edges, i.e.,
an arbitrary one-vehicle large section of the queue center line
must contain at least two intersection points with these edges.
The final criterion for selection refers to the edge support found
in the gradient amplitude image on each side of the center line at
a distance of roughly ±n. Figure 6 illustrates the individual steps
of queue extraction.

4.3 Fusion

The results of the two independently run algorithms are now fused
to make full use of the supplementary properties of the local and
global vehicle model. To this end, the results of vehicle detection

(a) Symmetry lines (SL, black) and intersecting edges (IE, white)

(b) Selected SL (according to distribution of IE)

(c) Final queues selected based on parallel edge support (see b);
detection using local model is overlayed (white, cf. Sect. 4.1);

rectangular box indicates example shown in Fig. 5

Figure 6: Intermediate steps of queue detection.

and queue detection are checked for mutual overlap and paral-
lelism (see Fig. 6 c). A queue is declared as verified if at least one
part of it is covered by vehicles found during vehicle detection,
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cf. Sect. 4.1. Unverified queues are eliminated from the result.
Then, those portions of verified queues that are large enough to
enclose a vehicle are analyzed for missing extractions. Since, in
many cases, such failures appear through vehicles with weak con-
trast, an attempt is made to recover these vehicles by extracting
homogenous blobs using a regiongrowing algorithm. To get ac-
cepted as vehicle, such a blob must almost completely fall into the
boundaries of the vehicle queue and the shape parameters of its
bounding rectangle must roughly correspond to vehicle dimen-
sions. In case of adjacent blobs, which would cause mutually
overlapping vehicles, only the larger one is taken into account
(see Fig. 7). Finally, other detected vehicles not being part of a
queue are added to the result without further verification. This
seems justified since — as a consequence of the stringent local
vehicle model employed — the false alarm rate of these results is
usually very low.

5 RESULTS AND DISCUSSION

We tested our detection algorithm on a series of high resolution
aerial images (ca. 15cm ground resolution) of complex down-
town areas. No pre-classification of regions of interest has been
carried out. The results shown in Figs. 7, 8 and 9 show that nearly
all passenger cars have been detected and that the false alarm rate
is acceptably low. Also some larger vehicles like vans or small
trucks whose geometry deviates from the local model too much
have been recovered thanks to the integration of the global queue
model. However, such vehicles have been missed throughout all
examples whenever they are not part of a queue. This kind of
problem could for instance be solved when additional contex-
tual knowledge about roads is available a priori or simultane-
ously extracted from the image. Failures occur also in regions
where the complete road is darkened by building shadows. Simi-
lar to the previous case, this could be overcome by pre-classifying
shadow regions, so that the vehicle model can be adapted accord-
ingly. Further improvements, mainly regarding the vehicle de-
tection scheme, include the optional incorporation of true-color
features and the use of a model hierarchy and/or geometrically
flexible models similar to (Olson et al., 1996, Dubuisson-Jolly et
al., 1996). The use of multi-view imagery to separate moving
from parking vehicles and to estimate vehicle velocity would be
another avenue of research.
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(a) Vehicle detection (white), queue, and blob detection (black) (b) Vehicles derived from blobs (black)

Figure 8: Example of fusion (white and black boxes in b): Note the successfully recovered vehicles in b) but also the missed vehicles
in the central part of the image (due to specularities on cars) and the incorrect extraction in the upper part (due to blob on tree, see a).

(c) (d)

(a) (b)

Figure 9: More results of vehicle detection (queue detection had no influence here): White wire-frame = Vehicles declared as dark
during matching and vice-versa. Note the high correctness except for the difficult area shown in d). Reasons for missing extractions —
mostly isolated vehicles — are weak contrast, specularities, occlusions, and unmodeled vehicle geometry.
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