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ABSTRACT:

We present a new method for the segmentation of color images for extracting information from terrestrial, aerial or satellite images.

It is a supervised method for solving a part of the automatic extraction problem. The basic technique consists in fusing information

coming from three different sources for the same image. The first source uses the information stored in each pixel, by means of the

Mahalanobis distance. The second uses the multidimensional distribution of the three bands in a window centred in each pixel, using

the Bhattacharyya distance. The last source also uses the Bhattacharyya distance, in this case coocurrence matrices are compared

over the cube texture built around each pixel. Each source represent a different order of statistic. The Dempster - Shafer theory of

evidence is applied in order to fuse the information from these three sources. This method shows the importance of applying context

and textural properties for the extraction process. The results prove the potential of the method for real images starting from the three

RGB bands only. Finally, some examples about the extraction of linear cartographic features, specially roads, are shown.

1. INTRODUCTION

Segmentation of images represents a first step in many of the

tasks that pattern recognition or computer vision has to deal

with. There are many papers dealing with segmentation of

images using color, see (Skarbek, 1994) for an early survey and

(Cheng, 2001) for a more recent one. Several authors are

applying different techniques for color in order to improve the

final result of the segmentation, for example, (Park, 1998)

presents a new algorithm based in mathematical morphology

that performs a clustering in 3D color space; fuzzy techniques

are applied by Yang et al. (Yang, 2002). Markov Random

Fields are applied for clustering in (Jayanta, 2002).

Of the all possibilities for studying segmentation of color

images in this paper we are going to focus on color texture.

Texture is appealing for dealing with context information, so

important in the psychological characteristics in recognising

objects in images. Color textures have also studied by several

authors, L. Song et al. (Song, 1996) have obtained the fractal

dimension of color texture with the correlation among the color

bands for feature extraction. Others that have used color and

fractal dimension for color texture segmentation are A. Conci

and C. B. Proenca (Conci, 1997). R. Krishnamoorthi and P.

Bhattacharyya (Krishnamoorthi, 1997) have put forward an

orthogonal polynomial base color texture model for the

unsupervised segmentation of images with interesting results.

The algorithms for the segmentation of images using color

texture have a very broad field of application, such as clothing

(Chang, 1996); automated surveillance (Paschos, 1999);

retrieving of images from a large database (Zhong, 2000).

In this paper a new technique, called Texture Progressive

Analysis (TPA), is presented. In this method color texture

means using the interweaving of color information in the three

bands by different order statistics. In order to obtain the greatest

amount of information from the different order statistics, the

method presented uses the theory of evidence (Shafer, 1976) as

a fusion technique.

In section 2 the different order statistics will be presented. In

section 3 the relationship between the systems RGB and HSI

and the order statistics is applied. To fuse the information

coming from the three sources of information in the same

image, the theory of evidence will be introduce in section 4.

Finally some results with real images will be given in section 5

along with some conclusions.

2. THE SOURCES

Only color images have been considered in this work. Each

image can be thought of as a set of points in a three dimensional

euclidean space. Each pixel x is represented as a point in this

euclidean space, where the three coordinates could be RGB

values of HSI values.

The training set is represented by several pixels in the area of

interest. Let us call (mt , t) the mean and covariance matrix of

the training set. For example, the training pixels used to

segment the path in figure 2a) are shown in figure 2b).

In order to segment the image three order statistics have been

used: In the first order statistic the Mahalanobis distance

between pixels to be detected and the training set are used. In

the second order a coocurrence matrix that interweaves color

bands is studied, and there is also an intermediate statistics

which uses the Battacharyya distance between the distributions

of pixels for the training area and the area to be detected.

2.1 Source 1: First order statistic

Since pixels are also points in a three dimensional space, the

simplest way of classifying the pixels in the image, as belonging

or not to the area of interest, would be to calculate the distance

between the pixels to be classified and the training pixels. To

see how far the new pixel is from the pixels in the area of

interest it would be necessary to see how far the pixel in study x

is from mt of the training set. The Mahalanobis distance d

(Fukunaga, 1990) will be use instead of the euclidean distance,

since the former gives a better approximation thank to the

introduction of the covariance matrix. Its equation is:

                )()( 1
xmxm tt

t
td                              (1)

where x represents the pixel in study and (mt , t) are the mean

and covariance matrix of the training set.
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The result of applying the Mahalanobis distance to the detection

of the path in the image in figure 2a) is presented in figure 2c).

This last image represents the values obtained from the

Mahalanobis distance normalized on a scale from 0 to 255. The

brighter the pixel the closer it is to the training texture. In this

case several pixels from the path area were taken as training

pixels (figure 2b).

2.2 Source 2: One and a half order statistic

Instead of comparing (mt , t) with isolated pixels, as has just

been done in the first order above, the group of pixels in the

training set in this order statistic is going to be compared with

the group of pixels around the pixel x, to be analysed at that

moment. This, in fact, is going to be established comparing the

distribution of pixels in the training area, with the distribution of

the pixels in an area around the pixel x. In order to do that a

window 5x5 has been taken around the pixel x, which allow to

calculate (mx , x) mean and covariance matrix for the

distribution of the pixels in the window. We have called this the

one and a half order statistics, since it is going to represent an

intermediate state between the image obtained with the

Mahalanobis distance and the one which is going to be obtained

with the cube texture later on. If distributions of pixels in the

window are close enough to the distribution of pixel in the

training set then the central pixel in the window could be

considered as belonging to the same group of the pixels in the

training set. These distributions are compared using the

Bhattacharyya distance b (Fukunaga, 1990):

xt

xt

xt
xtt

xtb
2

log
2

1
1

28

1
mmmm   (2)

where x is the covariance matrix of the group of pixels in the

window around the one in study x. The result of applying the

distance between distributions according to the function exp(-b),

to the real image of figure 2a) is presented in figure 2d).

2.3 Source 3: Second order statistic. The texture cube

Pixels that are close together tend to be more related than pixels

that are far away from each other. Statistics for pairs of pixels

could be studied through many different techniques. We have

looked for one that keeps the greatest amount of information

with the minor complexity in terms of computing time.

The technique of coocurrence matrices has shown its

possibilities in many practical applications of textures. A long

time ago J. Weszka et al. (Weszka, 1976) showed that

coocurrence matrices gave better results than spatial frequency

methods for terrain classification. Gagalowicz (Gagalowicz,

1987) has shown the power of coocurrence matrices for

synthetic textures. He has also studied color and third order

statistic, synthesising very complicated textures that requires a

great amount of computing time for processing the images.

In order to obtain a robust method only the pixels that are less

than three standard deviations from the media will be

considered for the calculation of the mean and covariance

matrix of the training set. Some pixels of the training set could

be noise, or they could be not properly representing the texture

for some reason. These pixels would be considered as outliers

for the training set.

A model of color texture have been created similar to the one in

Mao and Jain (Mao, 1992) in order to study the second order.

We have tried to keep the major amount of information through

out the whole process, using as few parameters as possible.

Actually there are only two, the size of the window and the

threshold for the plausibility that we will see in the following

section. These two parameters are fixed for all the images so

there is not necessity of tuning them for each picture, in that

sense the process is without user intervention and therefore

automatic.

For each pixel x a cube of edge three pixels is considered, as the

one represented in figure 1. This cube is called the cube texture.

The reason of fixing this size is to direct this method toward

road extraction for a wide range of images. In fact, given the

linear characteristics of roads, if a big window is used we run

the risk of taking pixels outside the road.

First the three sections formed for the bands are considered, that

is, each of the three sections Sk, k = 1,2,3. They correspond to

each of the bands in the decomposition HSI of the image, where

the pixel x is in the centre position of the cube. The cube texture

is formed with 27 cells, and since it has been consider 256

digital levels, each of the cells will have a number between 0

and 255. This has been done in this way, not using a threshold,

in order to retain the maximum amount of information possible.

As a second step, three new sections from the cube texture will

be considered, this time corresponding to the columns as shown

in figure 1. Therefore there would be six sections altogether.

3,2,1,255,0

6,,2,1
;

333231

232221

131211

jit

k

ttt

ttt

ttt

S
ij

k         (3)

For each section Sk, four coocurrence matrices are built for each

direction 0º, 45º, 90º and 135º. Therefore there are 24 matrices

altogether. In fact, these matrices are not built directly for

computing time reasons, since each matrix would have 65536

elements (256x256). The Section Sk is only of order three,

therefore it would result in a sparse matrix with a high number

of zeros. To avoid this, the coocurrence distributions has suffer

a minor modification that is showed as follow.

Let us be given the section Sk of pixel x of equation (3). The

coocurrence distribution in the level of grey tij for the direction

0º is considered in the following manner:

3332323131232322

2221211313121211
º0

,,,,,,,

,,,,,,,,

tttttttt

tttttttt
DCk

and similarly in the directions 45º, 90º and 135º.

Figure 1. The texture cube
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Note that we enforce a sort of cyclic distributions, all built by

eight elements with frequency equal to one. Therefore, the four

directions shown above are symbolic. In this way the 65536

values of the coocurrence matrix have been substituted by the

pairs of coocurrence which actually happen on the grey levels.

The features given in R. M. Haralick (Haralick, 1979) has been

calculated from the 24 matrices constructed above. The features

are these: Correlation, energy, entropy, maximum probability,

contrast, and inverse difference moment. However, to avoid the

problem of the sparsely in the matrices, as said before, the

concept of pairwide probability has been modified in an ad hoc

manner. Given the bidimensional distribution:

882211º ,,,,,, yxyxyxDCk

we define the pseudoprobability of element (xi, yi) as:

8

1j

jj

ii
i

yx

yx
ps                                (4)

Then the values for the Haralick features are the following:

*

i yx

ii yyxx

8

1
:nCorrelatio

*

i

ips2:gyPseudoener

*

i

ii psps log:opyPseudoentr                               (5)

* ipsMax:abilitypseudoprobMaximum

*

i

iii psyx:rastPseudocont

*

i iyix

ips
:ntpseudomomedifferenceInverse

For each x a distribution of 24 vectors of dimension six (one for

each Haralick feature) is obtained. This distribution (mx , x) is

compared with the corresponding to the training set (mt , t)

through the Battacharyya distance (2); then the respective value

exp (-b) is calculated. Figure 2e) shows the layer that is obtained

after applying the texture cube technique to the image in 2a).

It appears that as the order of statistics increase the closer we

are to the psychological concept of color detection. Some

authors are using psychological concepts in automatic

segmentation in order to improve some existing methods; such

is the work done by Mirmehdi and Petrou (Mirmehdi, 2000).

After many trials with several images and under a visual

evaluation we have chosen to apply:

- The RGB system in the first order statistics layer. It

appears that results using HSI are not as good as with

RGB.

- The HSI system in the intermediate layer. Though

some results are regardless of which system is

applied, RGB or HSI.

- The HSI system in the last layer, the texture layer.

Here, the results using HSI are significantly better

than applying RGB, therefore the former system has

been applied.

3. FUSION OF THE INFORMATION LAYERS

The results obtained from the three techniques above give

values that range between zero and one. This means that these

values can be considered pieces of evidence for the recognition

of the texture in study (Shafer, 1976).

We are going to consider only two classes in the Dempster-

Shafer theory of evidence. Either a pixel belongs to the texture

in study (to be detected) , or it belongs to the background .

There is also an uncertainty  inherent in the theory of evidence.

All this constitute the frame of discernment  in our case.

 = { }

For each pixel three values of evidence for each order statistic

will be obtained i (i= 1,2,3)

)(,)(,)( iii                             (6)

with the condition 1)()()( iii , i = 1,2,3.

We will see that using the theory of evidence the three group of

three values are fused to obtain only one group for each pixel.

3.1 The first order statistic

The Mahalanobis distances d (1) between pixel x and the set of

training pixels are calculated. Then the maximum dmax and

minimum dmin values are obtained for normalising, and the

complement to one is computed:

minmax

min1
dd

dd
d                           (7)

The standard deviation for the distance’s values for all the

pixels obtained in (7) is taken as the uncertainty  )(1 .

In order to verify the condition of summing equal to one, in

equation (6), the values )(1 are obtained in what follows:

1')(1 d                                    (8)

and by using its results the new evidence masses are obtained.

These are the definitive values of evidence of each pixel of

being close to the feature represented by the training set.

Therefore the values for not belonging to the training set would

be given by:

)1)('1()()(1)( 111 d      (9)

3.2 The first and a half and second order statistics

The Bhattacharyya distances b (2) between the training set (mt ,

t) and the window of each pixel (mx , x) are calculated. Then

the corresponding values d’ will be obtained by the following

equation,

be
d 1                                          (10)

Where b is the Bhattacharyya distance.

With the values d’ the evidence masses are calculated with (8)

and (9).
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The standard deviation for the distances values is assigned to

the uncertainty. )(2 .

The second order statistic is calculated very similarly to the 1.5

order. Again the Bhattacharyya distance is used, and the

evidence mass  will be obtained by equation (10).

3.3 Orthogonal product and plausibility layer

 With the values i( ), i( ) and i( ) for the three orders, i =1,

2, 3, the Dempster’s rule or orthogonal product of the theory of

evidence is applied (Shafer, 1976):

(11)

CB

ji

ACB

ji

ji
CB

CB

A
)()(

)()(

))(( ;  (A,B,C )

where AAA , .

In our case the frame of discernment is quite simple  =

{ }. It is useful to represent the orthogonal product with

the following square of unit side:

                                                                   j

      

                  

            

            

             i

One source i is represented along one side, where the

evidences , are given by their values. The other source j

is represented in the other side. The orthogonal product

ji , for one element of the frame of discernment, is given

by the sum of the rectangles inside of the square that has been

label with this element.

Figure 2f) shows the layer that is obtained after applying the

orthogonal product of the theory of evidence to the images in

figure 2c), 2d) and 2e). Since the orthogonal product is

associative a new set of masses is obtained by fusing the

information coming from the three order of

statistics: )(),(,)( fff ,where 321f .

In order to give the final result of the segmentation a binary

image is obtained showing which pixels belong to the texture

and which do not. The concept of plausibility from the theory of

evidence is applied. In our case the plausibility  for the pixel x

is the sum of the masses of the evidences for labelling the pixel

as belonging to the training set plus the uncertainty, that is:

)(1)()( fffx               (12)

Figure 2. (Up to down and left to right): a) Original image.

b) Training set. c) First order layer. d) First and a haft order

layer. e) Second order layer. f) Evidence masses. g) Plausibility

layer. h) Clean plausibility layer.

Here it is necessary to define a threshold in order to proceed

with the segmentation. As said above, it can be observed this is

one of the few parameters of the algorithm. It is the more

relevant since it could not be guarantee that an optimal

segmentation would be obtained in all cases. In figure 2g) is

represented the binary image obtained, and the figure 2h)

presents the image result after a clean process of small noise

areas, with the only objective of a better visualisation.
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4. RESULTS, EVALUATION AND CONCLUSIONS

4.1 Other results obtained

The process explain with the image of figure 2, has been

followed with many images, in all cases the results obtained

with the fusion of information from the different order of

statistics have been better than the ones obtained only with

information from the first order of statistic (Mahalanobis

distance). Some of these images are shown in the following

figures: The figure 3 shows the binary segmentation of the

woman’s dress; the figure 4 presents the extraction of the lake

on a terrestrial image; and the figures 5, 6, 7 and 8 present the

application of our method in the automatic road extraction on

aerial and satellite images.

Figure 3. (Left to right): Original terrestrial image. Training set.

Automatic result.

Figure 4. (Left to right): Original terrestrial image. Training set.

Automatic result.

Figure 5. (Left to right): Original IKONOS satellite image.

Training set. Automatic result.

Figure 6. (Left to right): Original aerial image. Training set.

Automatic result.

Figure 7. (Left to right): Original aerial image. Training set.

Automatic result.

Figure 8. (Left to right): Original aerial image. Training set.

Automatic result.

4.2 Evaluation

 The first source has the disadvantage with reference to the

second or third source (higher statistical order) that the results

dependent on the training set chosen. However, when

information from the first source is mixed with the information

from the other layers using the theory of evidence this problem

is partially solved. This is the principal advantage of our system.

When the second order statistic classifier fails to recognise a

pixel as belonging to the training area, the mixer of information

of the layers with lower order statistics compensate for the

miscalculation. To summarise, the mixing of information

through the orthogonal product produces better results than

those obtained using only just one order statistics, being

immaterial of whether it is the first, the second o the third

sources.

In order to check the efficiency of our method, the comparison

of TPA technique with the known Mahalanobis classifier is

presented in table 1 on diverse types of imagery. For each of

images 2 to 5, in the first row of each box; it shows the percent

of correct pixels detected for the first source only, and the

corresponding percent for the method developed with the TPA.
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The percents of errors type 1 (pixels erroneously detected) and

type 2 (pixels no detected) are presented in the other rows for

both methods.

MAHALANOBIS

CLASSIFIER

TECHNIQUE

TEXTURE

PROGRESSIVE

ANALYSIS

Correctness 90.68 95.15

Errors type 1 8.69 1.47

Errors type 2 0.63 3.38

Fig 2

Correctness 83.82 92.54

Errors type 1 15.95 0.16

Errors type 2 0.23 7.31

Fig 3

Correctness 63.27 99.63

Errors type 1 36.64 0.09

Errors type 2 0.09 0.28

Fig 4

Correctness 71.33 93.88

Errors type 1 28.28 4.02

Errors type 2 0.39 2.09

Fig 5

Table 1. Comparison between TPA technique and

Mahalanobis classifier.

About the automatic road extraction, the evaluation of our

system is achieved through an approach to the Wiedemann

method, presented in the paper (Wiedemann, 1998). The

corresponding central axis of the results are then compared with

the manual extraction, obtaining the values presented in table 2

on images 5, 6, 7 and 8.

Measures 5 6 7 8 Mean

Resolution (m) 1 2 1 2 1.5

Completeness (%) 79 66 86 91 81

Correctness (%) 82 65 93 94 84

Quality (%) 67 48 81 87 71

RMS difference(m) 0.6 1.2 0.6 1.2 0.9

Redundancy 0.004 0.01 0.02 0.01 0.01

Gaps per Km. 0 0 0 0 0.0

Gap length (m) 0 0 0 0 0.0

Table 2. Evaluation on road extraction.

4.3 Conclusions

Herein we have proposed a new method in order to extract

automatically information on terrestrial, aerial and satellite

images. The segmentation process is especially important for

solving the problem of thematic mapping with use of remote

sensing data, since a binary image of high quality is essential for

solving the later raster–vector conversion.

One of the major advantages of the technique described in this

paper is that it needs only a few parameters, and most of the

information is retained until the very end. These few parameters

are fix throughout out the whole algorithm and are the same for

all the pictures so the process could be considered almost

automatic, therefore it is proved that the introduction of

information of high order of statistics is good in all the cases.

At the end, the principal advantage of our approach is the

decreasing of the manual work in the process of bringing up to

date of data bases, geographical or other type, starting from a

minimum of input data.
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