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ABSTRACT:

In this paper we present an approach for the automatic extraction of trees and the boundaries of the tree’s crowns. The approach is 

based on a multi-scale representation of an orthoimage and a surface model in Linear Scale Space. The idea of the approach is that

the coarse structure of the crown can be approximated with the help of a sphere or an ellipsoid. This assumption is true, if the fine 

structure of the crown is ignored and the coarse structure is revealed in an appropriate level of the multi-scale representation of the 

surface model. But this scale level is unknown, because it is correlated with the unknown diameter of the crown. The proposed 

solution of this chicken-and-egg problem is to investigate a wide range of scale levels, and to select the best hypothesis for a crown 

from all these scale levels. The segmentation of the surface model is performed using the watershed transformation. The boundary of 

every crown is measured with Active Contours (Snakes). The approach was tested with surface models of different resolutions

(0.25 m and 1 m) and different sensors, laser scanner and image matching. An overview of the approach is given in the paper and

important points are discussed. 

1. INTRODUCTION 

In this paper we present a new approach for the automatic

extraction of individual trees using a true orthoimage and a 

surface model as input data. The approach is based on a

segmentation in multiple scales followed by an optimisation

step using Active Contours. The mathematical reasoning is

mainly based on differential geometry. The surface model is

used as main source of information for the extraction of the

individual trees, additional colour information from the

orthoimage is used to differentiate between vegetation and other 

objects in the scene. The aim of the approach is to detect every

tree in the observed part of the real world and to measure the

boundary of its crown. If the positions and the boundaries of the 

visible trees are known, than the crown diameter and additional 

descriptors concerning the shape of the crown can be derived. 

The height above the ground can be estimated if the ground is

visible close to the crown’s boundary. These parameters can be

used to estimate the stem diameter in breast height, the

individual surface of the crown, and the stem volume. Because

most of these parameters are not visible in aerial imagery, they

are usually estimated by means of statistical models (Hyyppä et 

al. 2000). 

Figure 1: 3D view of virtual trees 

Based on the position and the boundary of the measured trees 

one can build simple virtual trees for visualisation purposes, for 

example as additional information in 3D city models. The 

3D view in Figure 1 was generated using a scalable template1.

The virtual trees were placed onto the orthoimage with the help 

of the position of the automatically extracted trees. The height

of the virtual trees is assumed to be proportional to the

measured diameter. The 3D model is an optional output of the 

algorithm which is described in this paper. 

In the next section of the paper a short overview is given on the

related work in the field of the automatic extraction of trees in

forests and settlement areas. In the main section of the paper 

describes the approach, it is divided in two sub sections: The 

first one depicts the object model for trees and the second one

the processing strategy. In the last section we show some

exemplary results. We close with a short summary and an 

outlook.

2. RELATED WORK

Trees are important topographic objects in different fields of

applications. Not only ecological aspects constitute the interest 

in trees but also different economic factors. Obviously, data 

about trees play an important role in forest inventories and

forestry GIS applications. In forest inventories trees are counted 

and parameters like height and stem diameter are measured.

The first trial to utilize an aerial image for forest purposes was 

performed in 1897 (Hildebrandt 1987). Since that time the 

scientific forest community is working on methods for the

extraction of tree parameters from aerial images. The early

work was on the manual interpretation of images for forest 

inventory (Schneider 1974), (Lillesand & Kiefer 1994). The

pioneers in the field of the automation of the interpretation task 

“extraction of individual trees from images” proposed first 

approaches about one and a half decade ago (Gougeon & 

Moore 1988), (Pinz 1989). Recent work in the field was

published in (Pollock 1996), (Brandtberg & Walter 1998),

(Larsen 1999), (Andersen et al. 2002), (Persson et al. 2002). 

1 The tree template is described in (Saint John 1997). 
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Some of the recent publications are described in detail in the

following section. 

A common element of the most approaches is the geometric

model of a tree as it was proposed by R.J. Pollock in (Pollock 

1994) (Pollock 1996). In the following, this surface description 

is assigned as Pollock-Model, and the corresponding synthetic

trees as Pollock-Trees.

1

2 2 2

2 3: , 1 ,

n n

n

n

x y x
h h x a x

yb
(1)

The parameter a corresponds to the height, and b to the radius 

of the crown, n is a shape parameter. Two different surfaces

which can be described with Equation 1 are depicted in Figure 

2: The left one is an example for a deciduous tree, and the right 

one for a coniferous. 

Figure 2: 3D visualisation of the Pollock-Model. Left: Surface

model of a typical deciduous tree: a=7, b=3.5, n=2.0 Right: 

Coniferous tree: a=20.0; b=5.0; n=1.2.

The surface of a real tree is of course very noisy in comparison

to the Pollock-Model. This noise is not caused by the

measurement of the surface. It is simply a consequence of using

such a model for a complex shape like the real crown of a tree. 

But the main shape of the crown is well modelled with this 

surface description.

In general, there are two possibilities to build a strategy for the 

automatic extraction of trees from the image data. The first

possibility is to model the crown in detail: one could try to 

detect and group the fine structures in order to reconstruct the 

individual crowns. The second possibility is to remove the fine

structures from the data with the aim to create a surface which 

has the character of the Pollock-Model. In the literature exist 

examples for both strategies: In (Brandtberg 1999) it was 

proposed to use the typical fine structure of deciduous trees in 

optical images for the detection of individual trees. It seems that

this strategy works only for deciduous trees, the fine structure

of a coniferous tree is not really pronounced. The other 

strategy, the removal of noise, was proposed in (Schardt et al.

2002) and in (Persson et al. 2002). The main problem of this 

type of approach is the determination of an optimal low pass

filter for every single tree in the image. This is a kind of a 

chicken-and-egg problem, because the optimal low pass filter

depends mainly on the diameter of the individual tree one is 

looking for, which is not known in advance. In (Andersen et al.

2002) the fine structure of the crown is modelled as a stochastic 

process with the aim to detect the underlying coarse structure of

the crown. 

The idea of our approach is to create a multi-scale

representation of the surface model similar to (Persson et al. 

2002). The difference to the approach of Persson et al. is that in 

our approach the scale level is not assumed to be known. We 

try to overcome the mentioned chicken-and-egg problem with a 

search of the “best” tree hypothesis in multiple scales. In 

(Brandtberg & Walter 1998) it was originally proposed to use a 

representation of the image data in Linear Scale Space for the 

extraction of individual trees. A basic idea of the Linear Scale

Space is to construct a multi scale representation of an image,

which only depends on one parameter and has the property of 

causality: Features in a coarse scale must have a cause in fine 

scale (Koenderink 1984). The scale space transformation itself 

may not lead to new features. One can show that a multi-scale

representation based on a Gaussian function as low pass filter

fulfils this requirement. In practice, the original signal xf  is 

convolved with a Gaussian kernel with different scale

parameter , the result of the convolution operation is assigned 

as ,xf . Small values of  correspond to a fine scale, large

values to a coarse scale. An extensive investigation and

mathematical reasoning including technical instructions can be

found in (Lindeberg 1994). 

3. DESCRIPTION OF THE APPROACH 

A critical point for a successful extraction of trees is the 

selection of the scale level. The reasons are: (1) The correct 

scale level depends mainly on the size of the objects one is 

looking for. In the case of trees this size can neither be assumed

to be known a’priori nor it is constant for all trees in one image. 

The size of trees depends on the age, the habitat, the species and 

much more parameters, which cannot be modelled in advance. 

(2) The correct scale is of crucial importance for the

segmentation. The small structures of the crown are very

difficult to model and – except this small structures - the crown 

has a relatively elementary shape. In our approach the image is

segmented in a wide range of scales, just bounded by

reasonable values for the minimum and maximum diameter of a 

tree’s crown. In (Gong et al. 2002) the typical range for the

diameter is proposed to be minimal 2.5 m up to 15 m covering 

all species of trees. In our experiments we increase the scale

parameter in steps of about 1 m starting from 1 m up to 20 m. 

As input data we use a surface model and a true orthoimage.

The ground sampling distance (GSD) of the surface model is

0.25 m, it was produced by the French company ISTAR using 

1:5000 colour infrared aerial images acquired in summer 2000

with a GSD of about 0.10 m, refer to (Straub & Heipke 2001) 

for details. A subset of the surface model is depicted in Figure

3.

Figure 3: Surface model, buildings are marked with A and trees

with B. Three different scale levels of the marked

subset are depicted at the right margin.
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In the following section 3.1 a detailed description of the model 

of individual trees is given. In section 3.2 the processing

strategy for the extraction of these trees from the image and

height data is described. 

3.1

3.1.1

Model for Trees

Geometric Properties 

The geometric part of the model for an individual tree

simplifies the crown to a 2.5D surface, the Pollock-Model

(Equation 1). The parameter n can be used to define the shape

of a broad-leafed tree with a typical range of values from 1.0 to

1.8, and also for conifers with a typical range for n from 1.5 to 

2.5. These numerical values are based on an investigation 

described in (Gong et al. 2002). Based on the Pollock-Model 

we can derive the following features for the extraction from the 

surface model: The projection of the model into the xy-plane is

a circle with a diameter in given range. Furthermore the 3D 

shape of the surface is always convex. 

The image processing is based on differential geometric

properties. We use a profile along four tree tops to study these

properties of the surface model if the trees stand close together,

the normal case. Free-standing trees constitute exeptions. In the

left part of Figure 4 four Pollock-Trees computed with a=6 [m],

b=2 [m], and n=2.0 (1 m is equivalent to 10 pixels respectively

grey values) are depicted.

g
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Figure 4: Profile of the surface model of four Pollock-Trees, the

location of the profile is depicted in the upper left 

corner.

The profile is plotted in dark grey in Figure 4: One can see that 

the “valley” between the trees decreases from the left to the 

right. The absolute value of the gradient H x  (black line in 

Figure 4) decreases also. Obviously this is a consequence of the 

decreasing distance between the trees, and of the crown’s shape.

The surface at the tree tops has a convex shape in both

directions, along and across the profile. Therefore the sum of 

the second partial derivations is always negative for the whole 

crown (refer to the light grey line in Figure 4).

2 2

2 2
0 0

H x H x
H x

x y
0 (2)

At a point on the profile between two trees the partial, second 

derivative is smaller than zero along the profile and larger than 

zero perpendicular to the profile. Therefore, the Laplacian of 

the surface model H x at these points has got normally

higher values than at points on the crown, because both partial

second derivatives are smaller than zero at the tree tops 

(Equation 2). These characteristics lead to local maxima

between the crowns in H x .

In the case of real data this model is only valid in the 

convenient scale level. A height profile from real data is used to

explain the term “convenient” in this context. Two different 

Scale Space representations of the surface model H x  are 

depicted in Figure 5, according to the used  of the Gaussian

they are assigned as ,H x  with  values 0.5 m and 8 m.

One can see that more and more of the fine structures disappear

and the coarse structure is revealed with the increase of the 

scale parameter .

, 0.5H x m , 8H x m

Figure 5: Representation of the surface model H x  at two 

different scale levels (above). The height profiles

below are measured along the dotted line in the 

images.

The height profile along the tree tops is measured along the 

dotted line which is superimposed to the surface model in

Figure 5. The left height profile which is measured in the 

original surface model is noisy compared to the profile of the

synthetic trees. As a result of this noise the Laplacian is 

oscillating close to zero. In the “correct” scale level for this

small group of trees the assumptions regarding the Laplacian

are fulfilled quite well. Similar to the profile of the synthetic

Pollock-Trees (Figure 4) the Laplacian is negative for trees and 

positive for the valleys between them. The coarse structure of

the crown is enhanced, and as a result the properties of the 

Pollock-Model are valid also for the real trees in this scale

level.

3.1.2 Reflectance Properties

Vegetation has a typical spectrum of reflection in the green and 

the near infrared band of the electromagnetic spectrum of

wavelengths. The reflection of the near infrared band of the

solar radiation is higher for vegetation than for areas without 

vegetation and lower in the red band. Vegetation indices make 

use of this typical property. If possible, we use the Normalized

Difference Vegetation Index (NDVI) for the differentiation of 

vegetation and areas without vegetation in the images (refer to

Figure 6 for an example).
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Figure 6: Colour infrared image of trees (left) and NDVI of the 

same area, corresponding the white square in Figure

3.

The Degree of Artificiality, which is computed from the green 

and the red band (Niederöst 2000), is an alternative if the near 

infrared band is not available. A purely texture based 

differentiation of trees and buildings can also be performed if 

only panchromatic images are accessible, refer to (Straub

2002).

3.2 Processing Strategy

The basis of our approach is the Linear Scale Space Theory, the 

Watershed transformation is used as segmentation technique, 

Fuzzy Sets for the evaluation of the segments and Snakes for

the refinement of the crowns outline. The basic ideas of the 

Linear Scale Space Theory were originally proposed in 

(Koenderink 1984), and were worked out in (Lindeberg 1994). 

The Watershed transformation for the segmentation of images

was introduced by (Beucher 1982). Details about the watershed 

transformation can be found in (Soille 1999). Fuzzy Sets

(Zadeh 1965) are used, because they are a “very natural and 

intuitively plausible way to formulate and solve various 

problems in pattern recognition.” (Bezdek 1992). Snakes, or 

Active Contour Models, were introduced in (Kass et al. 1988),

they “look on nearby edges, localizing them accurately”.

In this section we describe how to combine these tools with the 

aim to detect individual trees and reconstruct the outline of the 

crown. As mentioned above a Multi Scale Representation of the 

image in the Linear Scale Space is used as a basis for the 

approach. The main steps of the processing strategy are

depicted in Figure 6: 

(1) Segmentation: Every scale level ,H x of the surface

model H x  is subdivided in segments B  using a Watershed

transformation. The resulting segments are the Basins of the 

Watershed transformation, were  indicates the scale level. 

(2) Computation of membership values: Membership values 

were assigned to every segment B , which are partly derived 

from the segments itself (size and circularity), or the area

belonging to the appropriate scale level ,H x  of the surface

model (curvature), and the image ,I x ( vegetation

index or texture). This results in hypothesis for trees ( )B a

with a feature vector a  of four fuzzy membership values. 

)e

(e a)

(3) Selection of valid hypothesis: Every tree hypothesis

( )B a  is first evaluated based on the feature vector. In some

cases this is leading to valid hypothesis from different scale 

levels which are covering each other in the xy-plane. These

covering segments have to be detected and the best one 

according its membership value, is selected as Tre (a .

(4) The outline of the crown of every Tre  is measured

using Active Contours.

3.2.1 Segmentation of the Surface Model

The segmentation of the surface model is that part of the 

approach which depends heavily on the scale. As mentioned 

above we perform a segmentation of the surface model in many

scales. The segmentation procedure itself should be free of

parameters and work only in the image space not in the feature 

space, because the feature space is independent from the scale

level. The watershed transformation fulfils these requirements,

and in addition it is well suited for the segmentation of height 

data. One reason is that the key idea of the watershed

transformation is the segmentation by means of a flooding

simulation (Soille 1999). Basins are the domains of the image

which are filled up first if a water level increases from the

lowest grey value in the image. Watersheds are embankments

between the Basins. This segmentation technique is also used in 

(Schardt et al. 2002) and a quite similar technique in (Persson et 

al. 2002) with the aim of detecting individual trees. 

If the watershed procedure shall be applied to extract trees from

height data the surface model has to be transformed in such a

way that the trees itself are basins. The easiest way to do this is 

to invert the surface model, as proposed in (Schardt et al. 2002). 

In forest areas there are usually narrow valleys between the 

individual crowns. In other areas, if trees occur in small groups 

or in rows like in settlement areas, the situation changes.

Because these valleys can be very wide, the outlines of the 

basins are usually quite poor approximations of the crowns. 

Then it leads to much better results to use the edges of the

surface model as segmentation function. 

The watersheds of the inverted surface model are superimposed

to the surface model in the left part of Figure 8, and the 

watersheds of the squared Laplacian of the surface model in the

right part. Note, that the basins in the left Figure fit much better

to the individual crowns than the basins in the right one. One 

can also see that if the trees stand close together – such as in 

Segments

Bsigma

Trees

Treesigma(am)
Segmentation

Treem

Crown

Outline

Segments

Bsigma(am)

Selection of

Valid Hypothesis

Image

I(x,sigma)

Surface Model

H(x,sigma)

Computation of

Membership Values

Active Contour

m

Figure 7: Processing Strategy for the extraction of trees 
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forest areas- the watersheds are correct. One can follow that in

general the edges should be used, because this works in both

cases.

Figure 8: A subset of the surface model showing three trees

(left) with superimposed watersheds of the inverted 

DSM (middle), the right image shows the

watersheds if the edges of the surface model are 

used as segmentation function. 

3.2.2 Computation of Membership Values 

In this section we explain the four membership functions, which

are used to transform the values for circularity, convexity, size 

and vitality (ref. Section 3.1) into membership values. 

The following break points are used to define the membership 

function (Figure 9 left) for the size of a tree: The lower border

is 20 m² according to a diameter of 2.5 m and the upper border 

is 700 m² ( 15 m). For larger values the membership value 

decreases, the largest possible diameter is assumed to be 35 m

( 3850 m²). The values for diameters cover all tree species,

they can be found in (Gong et al. 2002). In the mentioned 

investigation the typical diameters are given as well as the 

minimum und the maximum values, which are used to define 

the breakpoints of the size membership function. 

Figure 9: Size (left) and circularity (right) membership function 

The circularity of a segment is the second feature (Figure 9 

right). This feature is computed with the following formula:

max
/circularity Area B r (3)

A sensible lower border is close to the value of 0.7, the

circularity value of a square. The upper border is equal 1

according to the circularity of a circle. The other breakpoint

was set empirically.

The sign of the Laplacian of the surface model is used to

discriminate between convex surfaces as trees and non-convex 

surfaces. For example the surfaces of building’s roofs and the 

most ground surfaces are plane, whereas the crown of a tree is a 

convex surface (refer to Section 3.1.1). Thus, a negative mean

value of the Laplacian within the covered area of a segment

leads to a membership value of 1, and in the case of a positive

mean value the membership value is 0 (Figure 10 left). 

Figure 10: Convexity (left) and vitality (right) membership

function

The last feature vitality is derived from the optical image, it is

used to discriminate between vegetation and non-vegetation 

areas (Section 0). In this example we use the NDVI value as 

indicator for the vitality (Figure 10 right). Normally trees have 

relatively high NDVI values. Therefore we use a membership 

function with increasing membership value for positive NDVI

values with a break point at (0.5, 0.8). The reason for this

breakpoint ist that trees compared to lawn have usually a

relative high NDVI value. A NDVI value of above 0.5 is a good 

hint for a tree. 

3.2.3 Selection of Valid Hypothesis

The classification of the segments is subdivided into two steps. 

First, valid segments are selected according to their membership

values. A tree is an object with a defined size, circularity,

convexity and vitality. Consequently the minimum value of the

feature vector is the value which defines if a hypothesis ( )B a

is a ( )Tree a  or not. In some cases the valid hypothesis from 

different scale levels can occur at a more or less identical

position in the scene: Refer to Figure 11, the left image shows 

the valid hypothesis for trees at a scale level of =1.9 m and the 

right one at =3.7 m. One can see that many valid hypotheses

occur in more than one scale. In some cases the segments are 

quite similar in both depicted scale levels, but in some other

cases the segments are subdivided in the finer scale level. The 

trivial case – a segment in just one scale – is more an exception. 

Figure 11: Valid tree segments in two different scale levels. 

Left: =1.9 m. Right: =3.7 m.

In the second step these different situations for every segment 

are analysed. Hence, the topological relation between the 

segments over different scale levels has to be classified. If the 

type of the topological relation is known, the best hypothesis

for a tree can be selected at one and the same spatial position.

The classification of the topological relations between the valid

segments is performed as proposed in (Winter 2000). In 

general, eight different topological relations exist in 2D space: 

disjoint, touch, overlap, covers, contains, contained by, covers,

and covered by (Egenhofer & Herring 1991). These topological 

relations can be subdivided into two clusters C1 and C2, where 

the C1 cluster includes the relations disjoint, touch and C2 the 

other ones. The overlap relation is between these two clusters, it 

can be divided into weak-overlap (C1) and strong-overlap (C2)

(Winter 2000). The motive behind this partitioning is that the

relations in C1 are similar to disjoint, and in C2 to equal.

Here we postulate that all the segments  which have a 

topological relation from C2 to another segment

( )AB a

( )BB a ,

A B  from another scale level are potential hypothesis for the

same tree in the real world. The best hypothesis - the one with

the highest membership value - is selected as Tre ( )e a

instance. Accordingly, both investigated hypothesis are 
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assumed as valid if the relation between the two segments is

from C1.

Figure 12: Selected segments superimposed to the surface

model, the white lines depict the best segments over 

all investigated scales.

The selected hypotheses are depicted in Figure 12. The white

lines correspond to the outlines of the segments, which are 

selected as valid trees (compare Figure 11). Most of the trees in 

the scene were detected correctly, but many of the boundaries

are not really good approximations for the outline of the

individual crowns. The reason for the worse approximation of 

the outline is that the feature circularity is relatively weak for 

small segments on the one hand, and on the other hand it is the 

main decision instance between segments at the same location,

if the size, the vitality, and the convexity criterion have similar

or equal membership values. This occurs often, if the crown 

consists of more than one sub-crown. This leads over to the last 

processing step: The outlines of the crowns will be refined with 

Active Contours. 

3.2.4 Measurement of the Outline 

The outlines of the segments were extracted in different scale 

levels. But the outline of the crown is an object without a

changing scale, as distinct from the crown itself. In order to

take this into account, the outline of the crown is measured in 

the fine scale with the help of an Active Contour Model,

respectively a Snake. A Snake is a deformable geometric model

with physical properties like elasticity. It is a kind of a virtual

rubber cord which can be used to detect valleys in a hilly

landscape with the help of gravity. If the Snake is initialised 

close to the valleys of the landscape, the gravity causes a

movement to the valleys. The “landscape” may be a surface

model, an image, or the edges of an image. The movement

originates in a field of gradients, which can be computed on the 

base of an edge detectors result. Compare Figure 13: In the

background one can see the edges of a circular object, the

enlargement in the foreground shows the field of gradient

vectors. The source of the gradient field is usually assigned as 

external force or external energy.

Figure 13: Left: External force for a Snake (background) and 

the resulting field of gradients which controls the 

movement of a Snake (foreground). 

Right: Example for the measurement of the outline 

with a Snake. Five different optimisation steps are 

depicted.

Snakes were originally introduced by (Kass et al. 1988) as mid-

level algorithm which combines geometric and/or topologic

constraints with the extraction of low-level features from

images. The principal idea is to define a contour with the help 

of mechanic properties like elasticity and rigidity, to initialise 

this contour close to the boundary of the object one is looking 

for, and then let the contour move into the direction of the 

boundary of the objects. The original energy based approach for 

the contour can be reformulated to a pure geometry based 

approach, called Geodesic Active Contours (Caselles et al.

1997). Recent developments combine Geodesic Active 

Contours with level set methods (Paragios & Deriche 2002),

then the topology of the Active Contour can change during the 

optimisation.

In general, there are two main drawbacks for the application of 

Snakes as measurement tool. The first one is that the Snake has

to be initialised very close to the features one is looking for. 

Otherwise the behaviour of the Snake is nearly impossible to 

predict. The second one is the tuning of the parameters, 

primarily the weighting between internal and external forces 

and the selection of the external force field itself.

In our approach the Snake is used only for the fine 

measurement in the last stage, the coarse shape of the crown is

more or less known. Furthermore we know that the

approximation is often too small. Based on these constraints we 

could build a Snake which is quite stable under this special 

conditions: The geometry of the Snake is initialised for every

( )Tree a  as circular shaped closed polygon at the gravity

centre of the appropriate Basin B . This initialisation stage is 

depicted in Figure 12 as grey (blue) circle in the left image. The

parameters for the internal energies were tuned such that the

length of the contour is low, and the curvature a high weighted. 

Without external forces, a Snake which is tuned in such a way

converges to a circle with a trend to decrease its length2. As the 

approximation is often to small (see last section) an additional

force is added, which makes the Snake behave like a balloon

(Cohen 1991). With this additional force the contour moves

towards the outline of the crown even if no external forces

influence the movement. As external force the we use the 

absolute value of the gradients ,H x . In order to enhance 

the capture range of the gradients in the fine scale (refer to

Figure 14 left) we use the sum of the gradients absolute values 

over all scale levels. The fine scale edges are preserved and the 

capture range is enhanced, compared to the fine scale edges

alone (refer to Figure 14 right). 

At least, the membership values of every  has to be 

computed again because its outlines have changed. Even the 

topological relations between the tree hypotheses are no longer

valid and have to be computed again. Furthermore, a changing 

( )Tree a

2 The weighting parameter alpha for the first order term of the 

internal energy is set to low values close to zero, the 

parameter beta for the second order term has a high weight.

According to the classical notion of (Kass et al. 1988). 
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of the topology occurs if the segments  correspond to 

two or more parts of the same crown in the real world. 

( )B a

, 0.4H x m ,H x

Figure 14: Examples for different external forces fields.

In these cases, the Snake converges usually to an identical 

solution for every of these parts. And this again leads to the 

change of the topological relation from the C1 cluster (similar

to disjoint) to the C2 cluster (similar to equal). The updated 

membership values are quite independent from the pre-

processing in the different scale levels. Therefore these values

are well suited as internal evaluation of the tree hypotheses.

4. RESULTS 

The results of the whole approach are depicted in Figure 14, 

every as one circle. The position of the Tre( )Tree a ( )e a

is the centre of gravity of its outline, and the radius is computed

based on the outline’s length. The valid instances are plotted in 

black, the white circles are the hypothesis which are looked

upon as not valid. The instances, which are marked with an “A”

in Figure 15, are examples for the situation as mentioned above:

A crown which was split into two or more segments was

correctly delineated by the Snake, and as a result the redundant

instances were removed. In the “B”-marked situation a true 

positive was removed, because it was strong overlapped by

another instance. The “C”-marked instances are evaluated as

not valid because the membership value after the re-

computation is too low. 

Figure 15: Final results of the approach. Valid hypothesis for

trees are depicted as black circles, non-valid

hypothesis as white circles. 

The results as depicted in Figure 15 are typical for the approach

if the membership functions were not tuned for a special scene.

The values for the size stem from an independent investigation 

(Gong et al. 2002), and the convexity is always positive. Only

the breakpoints in the circularity membership function are more

or less heuristic values. The breakpoint for the vitality has to be

selected manually. Under this pre-conditions the results are 

convincing.

5. SUMMARY AND OUTLOOK 

An approach for the automatic extraction of trees from a true

orthoimage and a digital surface model was presented in this

paper. The approach is free of a’priori assumptions about the

scale level in which the trees are represented ideally. The 

relevance of the scale level has been worked out in the paper. 

The segmentation is performed in a wide range of scale levels,

and the evaluation of the segments is independent from the 

scale. The approach is free of assumptions about the terrain,

because the height of the trees is not used for the detection. This

is important to note, as it is a difficult task to extract the ground 

surface in forest areas automatically. And finally the 

classification of the hypothesis is based on not more than four 

parameters: size, circularity, convexity, and vitality. From these

four parameters only one depends of the used image material,

the other ones are object properties. The measurement of the

crown’s outline is performed with a Snake. The tuning of the 

parameters for the Snake algorithm is a difficult task, but once

adjusted it works stable as measurement tool without changing 

these settings if the input data and/or the context changes. The 

approach was tested on different larger data sets, which can be

found in (Straub 2003a) (Straub 2003b). 

Further developments should focus on the evaluation of the tree

hypothesis. The highest potential is expected by a refinement of

the membership functions with the help of statistical

investigations on large data sets. The detection of the individual 

trees and the measurement of the outline can be looked upon as 

a bottleneck for the further classification of trees. Based on

these, further information about the 3D shape of the crown or

the fine structure characteristics of the individual tree can be

extracted in the future. 
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