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ABSTRACT: 
 
Motion imagery datasets capture evolving phenomena like the movement of a car or the progress of a natural disaster at video or 
quasi-video rates. The identification of individual spatiotemporal trajectories from such datasets is farm from trivial when these 
trajectories intersect in space, time, or attributes. In this paper we present our approach to this problem and relevant algorithms. A 
key component of our work is the attribute classification (AtC) strategy, a novel approach to classify individual trajectories using a 
sequence of image processing and neural network tools. Geometry, k-means clustering, backpropagation and self-organizing maps 
are the tools applied towards the classification of such datasets. Other key components of our approach include the novel g-SOM 
approach to generalize spatiotemporal datasets, and the concept of spatiotemporal helixes, used to model the behavior of individual 
objects. In this paper we present these key components of our approach and some experimental results.   
 
 

                                                                 
*  Corresponding author.    

1. INTRODUCTION 

Motion imagery (MI) datasets capture evolving phenomena like 
the movement of a car or the progress of a natural disaster. 
Depending on the nature of the observed phenomenon MI 
datasets may be video feeds, or sequences of still imagery at 
distinct intervals. Furthermore, their content may be quite 
dense, with numerous objects moving in the monitored area. 
The identification and modelling of individual trajectories in MI 
datasets represents a substantial challenge for the 
photogrammetric and computer vision communities. Interesting 
work in this field has been performed in both video processing 
and spatiotemporal analysis domains. In the trajectory domain, 
there is work for spatio-temporal synthetic dataset generation to 
simulate movement trajectories (Pfoser & Theodoridis, 2000). 
In (Bradshaw et al., 1999) Kalman filters are used to describe 
the motion and real time trajectory acquisition. In (Bremond & 
Medioni, 1998) a system is used to extract and recognize 
moving objects, as well as to classify the motion by modeling 
scenarios. Sorting data according to their spatial occupancy 
through tree structures is a regularly proposed data 
manipulation scheme (Sellis et al., 1987). Interesting work on 
indexing animated objects is reported in (Kollios et al., 1999; 
Vazirgiannis & Wolfson, 2001).  

This paper addresses the classification and modeling of 
moving object trajectories from an input video dataset. By the 
term classification we imply the identification of all instances 
of the same object and their linking into individual trajectories. 
This is often treated as a clustering problem, and common 
approaches include the use of k-means clustering and its 
variations (Hartigan, 1975), self-organizing maps (Kohonen, 
1977), and neural networks (Sweeny et al. 1994). In recent 
years clustering is application oriented. Thus, research focuses 

on forming variations of clustering techniques according to 
specific applications and dataset formations (Ng & Han, 1994).  

This paper is organized as follows. In Section 2 we present 
an overview of our approach to video analysis and trajectory 
modeling, followed by a discussion of the involved datasets in 
Section 3. Section 4 presents our attribute classification strategy 
for the identification of individual trajectories from a complex 
input video signal. Section 5 offers an overview of our g-SOM 
algorithm for the generalization of spatiotemporal trajectories, 
while Section 6 presents the concept of spatiotemporal helixes 
to model this information. We conclude with some experiments 
(Section 7) and future plans (Section 8).  

 
 

2. APPROACH OVERVIEW 

Motion and video imagery are emerging as major sources for 
intelligence information, especially in rapidly evolving 
operations. Novel deployment techniques, e.g. video sensors 
onboard unmanned aerial vehicles (UAVs), and distributed 
sensor networks are supporting the collection of timely, 
geospatially registered information, enabling the precise 
monitoring of mobile objects. This transition from static to 
motion imagery is introducing substantial challenges related to 
the large amounts of data involved, and the corresponding 
processing requirements.  

Our approach to motion imagery analysis and modeling is 
a three-stage process (Fig. 1):  

• The first stage of our approach uses as input the video 
feed and identifies in it a number of individual trajectories. A 
combination of accumulative frame differencing (AFD), 
morphological filtering, and attribute classification (AtC) 
solutions performs the identification of individual object 



 

trajectories using as input a video signal depicting multiple 
moving objects.  

• During the second stage of our approach each 
trajectory is generalized through an extension of self-organizing 
maps (SOM), identifying critical nodes on them. 

• Finally, the innovative concept of the spatiotemporal 
helix serves as a motion indexing mechanism to describe the 
motion patterns of individual objects, and to classify and 
differentiate the trajectories of different types of objects.  
 

Identification of individual
trajectories

Trajectory generalization
through g-SOM

Trajectory modeling through
SpatioTemporal Helixes

Video Feed

Repeat for all
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Initial identification of target
vehicles

Identification of suspicious
movements and vehicles

 
Figure 1. Video analysis framework. 

 
In this paper we present an overview of our activities in these 
three stages, with more emphasis put on the first stage, and 
specifically our AtC strategy. 
 
 

3. FROM VIDEO TO TRAJECTORIES 

The goal of the first stage of our approach is to detect motion in 
selected movie scenes. To detect motion we begin with a 
standard accumulative frame differencing (AFD) algorithm. 
The parameters for this task include the gray value difference 
threshold, and the number of frames used for our analysis, Both 
parameters can be initialized at default values (based on 
anticipated velocity and radiometric conditions) that can be 
subsequently adapted based on the analysis of the results. The 
output of AFD is a binary movie of motion. An example frame 
of such a binary motion movie can be seen in Figure 2 (top). 
One can clearly distinguish the leading and trailing edges of a 
person moving through the scene. This is obviously due to the 
use of absolute value differences in our AFD approach. In order 
to link these two motion components we proceed with a 
morphological operation. More specifically, a combination of 
dilation-and-erosion (D&E) produces a solid cluster 
representing the movement of an object during this sequence of 
frames (Fig. 2, bottom). A filtering algorithm allows us to 
eliminate useless information by using pre-specified ranges of 
size (and/or other parameters like eccentricity) values. In this 
manner we can also distinguish for example motion data for 
people and cars.  

Spatiotemporal trajectories can be best visualized by 
making use of the 3-dimensional (x,y,t) spatiotemporal domain 
of a scene, comprising two (x, y) spatial dimensions 
representing the horizontal plane, and one (t) temporal 
dimension. The complex trajectory of an object over time is 
described as the union of its locations over time. While Fig. 2 
shows the results for two clearly distinct moving objects (the 

second one is on the left hand side of the field), in general we 
can have numerous objects moving within the sensor field of 
view. These moving objects can produce numerous, often 
entangled trajectories over the extent of a brief video segment. 

 
 
Figure 2: AFD result (top), followed by dilation-and-erosion 

(bottom). 
 

We assume as input dataset for our AtC solution 
information that has the form of (x,y,t,c,s), where x,y,t are the 
S-T coordinates of the trajectory, c is radiometry ranging from 
0-255 (for common grayscale images), and s is the size of the 
object, defined by the number of patch pixels describing the 
object. All attributes associated with an object may be 
somewhat imprecise, due to common problems like occlusions, 
noise etc. Thus, patches corresponding to the same object may 
still vary in size and/or color.  
 
 
 
 
 

 
 
 
 
 
 

Figure 3. Potential misclassification of trajectories. 
 
 Let us consider a pair of trajectories. If they are distinct in 
space, time or attributes, classification could be easily 
completed through proximity analysis. On the other hand, if 
they are entangled as shown in figure 3, the classification of 
each point to its corresponding trajectory is not a trivial task. 
The proximity of locations and/or attributes causes pure 
geometric analysis using neighboring distance metrics to be 
often inadequate. For the two segments on the crossing of the 



 

trajectories of figure 1 we cannot be sure whether the 
trajectories follow the almost straight path or the curved one. 

At this point since the focus is on the classification of 
trajectories we consider few moving objects in our scene, and 
also consider common non-deformable moving objects (e.g. 
cars).  
 
 

4. ATTRIBUTE CLASSIFICATION STRATEGY 

The analysis introduced in this section focuses on the 
differentiation of trajectories, based on both spatio-temporal 
and attribute coordinates. Our attribute classification (AtC) 
strategy comprises the three sub-processes outlined in Fig. 4. 

Geometric Grouping

Attribute Clustering

Backpropagation Classification
 

 
Figure 4. Attribute classification (AtC) Strategy. 

 
4.1 Geometric Grouping 

During geometric grouping we separate groups of points that 
are spatio-temporally distinct from any other group. This is 
accomplished by imposing a distance threshold to each pair of 
points. Points form groups as long as they are farther than the 
threshold distance from corresponding points of the same 
temporal instance, and are close to each other in the temporal 
direction.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5. Branch formation and attribute mapping. 
 

A temporal proximity is also required to describe the 
connection between the processed points. The groups of points 
are considered the base units over which the first step of 
classification takes place and they are termed as ‘branches’, 
shown in figure 5, left (boxes). There is strong confidence that 
the points included in each branch, belong to the same 
trajectory even though we do not yet know to which one.  
 
4.2 Attribute Clustering through k-means 

During attribute clustering we identify correspondences among 
the groups selected in the previous step. Our aim is to link 

groups that belong to the trajectory of the same object. We 
accomplish this goal by making use of the attribute space. Size 
and radiometry (color or gray values) are the main attributes we 
consider, but additional attributes may also be used (e.g. 
eccentricity). Fig. 5 (right) shows the transformation of the box 
contents onto a color-size attribute domain. In this attribute 
domain all instances of the same object will form compact 
clusters. Thus, group linking in the spatiotemporal domain 
becomes a clustering problem in the attribute domain. As long 
as the attributes of different objects are at least partially 
different, they can be differentiated in the attribute space.  

The next step is to identify clusters in the attribute space 
data. The number of clusters corresponds to the number of 
distinct objects captured in our input video. This task is 
accomplished by utilizing a simple SOM or k-means algorithm 
that takes into account not only the separability of the data but 
also the neighboring of each point to the others. The result is 
shown in figure 6. Two nodes initialize the algorithm and after 
the iterative process they converge to the center of the two 
formed clusters each representing three attribute pairs. The 
branches are now classified and related to the trajectory they 
belong to (marked by white and black dots). 

  
 

 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 6. Attribute clustering and branch classification. 
 

The remaining points, namely the ones near the 
intersections between the trajectories are still unclassified. Their 
classification is accomplished by utilizing a backpropagation 
neural network. 
 
4.3 Backpropagation Classification 

During backpropagation classification we use the information 
provided by the labeling of the distinct groups (accomplished 
through geometric grouping and attribute clustering) to assign a 
single trajectory label to each and every cluster of pixels in our 
input spatiotemporal dataset. We accomplish this task using a 
backpropagation neural network (BNN).  

The backpropagation neural network (NN) (Haykin, 1999) 
is a broadly used neural network that is applied to numerous 
diverse applications. Its basic concept is that an input space gets 
connected with an output space through a series of synaptic 
neurons that form sets of hidden layers.  

In our case the goal is to classify a multidimensional 
dataset into separable classes. The input space is five-
dimensional as previously described (corresponding to the five 
coordinates identified in Section 3) and the output dimension 
equals the number of objects in the scene, as it was determined 
during attribute clustering. There is a need for training of the 
network in order to learn the specific classification task. 
Therefore, a set of correct classified input-output relations is 
required. This training phase would adjust the values of weights 

color 

 size 

size

color



 

and biases in the network and thus it is important to include as 
many correct training data as possible to accomplish the best 
possible performance. Our training space is formed by the 
already classified branch points of the trajectories, as described 
in the previous section. In many cases and according to the 
application at hand these already classified points comprise a 
large percentage of the original dataset and the performed 
classification is highly effective. The final classification step 
includes the separation of each classified point population into a 
different dataset, which most likely would be incomplete and 
would include some outliers-misclassified points. Many of the 
outliers can be easily removed according to simple proximity 
tests. Some additional post-processing procedures further 
enhance the classification confidence. 

Experiments show that a two hidden layer network 
comprising of five and three nodes accordingly is capable to 
perform an adequate classification as shown in figure 4. A 5-
dimensional input space results in a three possible output layer 
for a dataset comprising of three trajectories. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 7. Backpropagation classification outcome. 
 
 

5. TRAJECTORY GENERALIZATION THROUGH G-
SOM 

The process outlined in the previous section uses as input a 
video feed and produces a set of spatiotemporal trajectories 
corresponding to the objects moving in this feed. As video 
imagery is by its nature highly redundant, we need to reduce 
these trajectories to their essential information. This is a 
generalization task, and we approach it using a novel variation 
of Self-Organizing Maps (SOM).  

The SOM algorithm (Kohonen, 1982) is a nonlinear and 
nonparametric regression solution to a class of vector 
quantization problems. It belongs to a distinct class of artificial 
neural networks (ANN) characterized by unsupervised and 
competitive learning. In this iterative clustering technique, 
cluster centers-nodes are spatially ordered in the network space 
ℜN in order to represent the input space ℜI. The objective of the 
SOM is to define a mapping from ℜI

m onto ℜN
d where m ≥ d. 

Applied to spatiotemporal trajectory data, it uses as input a 
large number of sequential points in the spatiotemporal (ST) 
domain, and distributes representative nodes to this input space 
so as to provide an abstract representation of it. Thus, it 
produces a generalized representation of the input space.  

While standard SOM solutions provide adequate 
representations of relatively smooth lines (e.g. road networks 
(Doucette et al., 2000)), they are less successful when applied 
to complex spatiotemporal trajectories. As objects 
accelerate/decelerate, turn, or even stop, their spatiotemporal 
trajectories become fairly complex. This information is very 

important for intelligence analysis, as it signifies specific 
mobility patterns. Fig. 8 shows how a standard SOM solution 
fails at instances to capture the convoluted geometry of the 
input space. The generalized line (as it is delineated by the 
green nodes) is a polygonic approximation of the input space 
that misses some of the turns and corners of the actual 
trajectory.  
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Figure 8. Standard SOM generalization of a trajectory. 
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Figure 9. Application of g-SOM to generalize a trajectory. 

 
In order to improve the use of SOM for spatiotemporal 

generalization we have to enable the SOM nodes to be 
distributed in a manner that captures the complexity of the 
analyzed trajectory. Complexity is defined in our context as the 
spatiotemporal variation of the moving object’s behavior. In 
order to detect and quantify this variation we have introduced a 
novel variation of SOM that proceeds by:  

• analyzing local variations of the input data to identify 
geometrically complex spots, and 

mis- 
classification 

Unclassified 
points 



 

densifying the number of local nodes used to represent 
such spots by adding a highly localized mini-SOM solution. 

A detailed description of our geometrically-enhanced 
SOM (g-SOM) technique may be found in (Partsinevelos et al. 
2001). Early experiments with g-SOM are confirming its 
superiority compared to the standard solution. Fig. 9 shows how 
the g-SOM solution uses more nodes to capture the complex 
spatiotemporal lifeline of Fig. 8.  

 
6. TRAJECTORY MODELING THROUGH 

SPATIOTEMPORAL HELIXES 

As mentioned above, the complex trajectory of an object over 
time is described as the union of its locations over time in a 
three-dimensional spatiotemporal domain (x,y,t). It can be 
visualized by piling the object’s recorded positions on top of 
each other at the corresponding time instances. As an example, 
a circular object that remains stable will describe a cylinder in 
the spatiotemporal domain, while a rectangular object that is 
shrinking at a constant pace until it disappears will produce a 
pyramidal trace. The trajectories captured through the processes 
outlined in the previous two sections have to be indexed to 
support further analysis (e.g. comparison of trajectories to 
identify movement patterns common in a class of objects). 
Towards this goal we have introduced the innovative concept of 
the spatiotemporal helix.   

We can identify two important types of geospatial 
information that describe the spatiotemporal behavior of an 
object: movement and deformation. First, the object moves 
changing its location with respect to an external reference 
frame. This information is represented by a trajectory 
describing the movement of the object’s center of mass, as 
described in the previous two sections. The second type of 
spatiotemporal change refers to the object’s internal reference 
frame and describes the variations over time of the object’s 
shape. This change is represented through a set of vectors that 
pinpoint the placement, direction, and magnitude of the object’s 
shape change.   

We introduce the spatiotemporal helix (STH) as a compact 
description of an object’s spatiotemporal variations. It 
comprises a central spine and annotated prongs. More 
specifically: 

• The central spine models the spatiotemporal 
trajectory described by the center of the object as it moves 
during a temporal interval.  

• The protruding prongs express deformation 
(expansion or collapse) of the object’s outline at a specific 
time instance.  

Fig. 10 is a visualization of the concept of the 
spatiotemporal helix. The spine is the vertical line that connects 
the nodes (marked as white circles), and the prongs are shown 
as arrows protruding from the spine, pointing away from or 
towards it. The gray blob at the base of the spine is the initial 
outline of the monitored object. The helix describes a 
movement of the object whereby the object’s center follows the 
spine, and the outline is modified by the amounts indicated by 
the prongs at the corresponding temporal instances.  

As a spatiotemporal trajectory, a spine is a sequence of 
(x,y,t) coordinates. It can be expressed in a concise manner as a 
sequence of spatiotemporal nodes S(n1,…nn). These nodes 
correspond to breakpoints along this trajectory, namely points 
where the object accelerated/decelerated and/or changed its 
orientation. Accordingly, each node ni is modeled as ni(x,y,t,q), 
where:  

• (x,y,t) are the spatiotemporal coordinates of the 
node, and  

• q is a qualifier classifying nodes as acceleration 
(qa), deceleration (qd), or rotation (qr) ones. 

The qualifier information q is derived by the local values 
of spine gradients. High values of the vertical gradient indicate 
acceleration or deceleration, while high values of the horizontal 
gradient indicate rotation. While this information is derivative 
of the other three values, it is considered semantically important 
for describing an object’s behavior, and this is the reason we 
store it separately. These nodes of the STH spine are the points 
captured through the g-SOM algorithm (described in previous 
sections). 
 

 
 

Figure 10. Visualization of the SpatioTemporal helix 
 
 

7. EXPERIMENTS 

In order to investigate the application of our attribute 
classification strategy we used two quite similar trajectories, 
and investigated the ability of our approach to distinguish them. 
In order to communicate the similarity between these two 
datasets we use a pair of attribute similarity percentages. The 
first percentage is the radiometric similarity between two 
trajectories, and the second percentage portrays the similarity in 
sizes of objects as they are captured throughout the MI dataset. 
For both percentages 0% corresponds to perfect dissimilarity 
and 100% corresponds to perfect similarity. Additionally, we 
used two error metrics to evaluate the results. First, the 
percentage of wrongly classified points shows how many of the 
classified points are assigned to the wrong class and is 
referenced to as PM. Second, the percentage of unclassified 
points shows how many points could not be assigned to any 
class (due to inherent ambiguities), and is referred to as PU.  

 
  

 
Figure 11. Input dataset for very close moving objects. 
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To compare our method with a common clustering 
classification we use as reference the c-means algorithm for 
both the 5-dimensional input space and the 2-dimensional 
attribute space. We use two different datasets (SET1 and 
SET2). In Fig. 6 we show the formed branches and their 
mapping on the attribute space for SET1. It represents an 
average situation, with two entangled trajectories. The resulting 
classification after the BP algorithm is shown in center, while 
the right side shows the results of a c-means algorithm. In Fig. 
11 we show SET2. It represents an extreme situation, with two 
trajectories traveling in the same road, trailing each other by 
few instances. This is a situation that is quite difficult even for a 
human operator to discern, yet our algorithm shows excellent 
results. 

For both datasets we introduced an increasing level of 
similarity in the two additional attributes (size and radiometry), 
ranging from 20 to 100%. In Table 1, we tabulate the results for 
these tests.  
 

Set 1 After BP 
(1-PU) 

After BP 
(1-PM) 

Pure c-means 
(1-PM) 

20,20 93 98 91 
40,40 85 97 78 
60,60 83 96 65 
80,80 70 95 - 
100,100 68 100 - 
Set 2 After BP 

(1-PU) 
After BP 
(1-PM) 

Pure c-means 
(1-PM) 

20,20 86 93 92 
40,40 75 99 82 
60,60 83 93 63 
80,80 75 93 - 

100,100 70 100 - 
 

Table 1: Comparison between clustering algorithms. 
 

 

 
Figure 12: An evolving object 

 
The first column shows the percentage of similarity in size 

and shape. The second column shows the percentage of 
classified points (1-PU) after our approach, the third column 

shows the percentage of correctly classified points (1-PM) after 
our approach, and the last column shows the same percentage 
(1-PM) for the c-means solution. Obviously, c-means by design 
will classify all input data, thus there is no meaning behind the 
1-PU metric for this case.  

The results tabulated in Table 1 show that our approach 
outperforms the c-means solution for both types of datasets. 
This is especially the case as the overlap in the two attributes 
increases. The c-means solution eventually collapses as overlap 
reaches very high values (80% or above), while our solution 
remains robust even under such unfavorable conditions.  

It should also be noted that as shown in the Table the 
percentage of misclassifications in our approach remains 
controlled and low. Thus the produced results are of high 
accuracy.  

 

 
 

Figure 13: The spine of the S-T helix corresponding to the 
phenomenon of Fig. 12. 

 
In Fig. 12 we show an evolving object extracted from a MI 

dataset, and in Fig. 13 the spine of its helix representation. A 
metric to describe how well a g-SOM extracted spine fits the 
original dataset is provided by the RMS distance between SOM 
nodes and actual data. Experiments with spatiotemporal 
trajectories indicate that the use of g-SOM for the 
generalization of spatiotemporal trajectories results in a 
reduction of this RMS metric by approximately 75% 
(Partsinevelos et al., 2001). 
 
 

8. CONCLUSIONS 

In this paper we presented an overview of our approach to 
motion imagery analysis for the identification and modelling of 
object trajectories. Our three-stage approach comprises 
innovative solutions to differentiate individual trajectories from 



 

a complex video feed, generalize these trajectories, ad model 
them. We are currently working on developing similarity 
metrics to compare different spatiotemporal helixes. This will 
allow us to compare events as they develop, thus providing 
metric-quality potential for spatiotemporal analysis.  
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