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ABSTRACT: 
 
In this work we tried to solve some non-linear problems of analytic photogrammetry. These problems are also widely flowed into 
the digital photogrammetry. The model formation considering the solution of the Relative Orientation, and the object reconstruction 
considering the solution of the Absolute Orientation have non-linear functional models. These models need an exhaustive research 
of the preliminary values (of parameters) for the Relative Orientation, and a transformation of the parameters able to transform the 
problem of the Absolute Orientation in a simple linear problem. In model formation we used the coplanarity condition and even if 
we could not find the correct solution, we made (only for the Relative Symmetric Orientation) a research of all possible preliminary 
values and, among these values, we managed to select only 4 possible configurations. In the object reconstruction, using the 
Rodriguez matrix, we managed to solve a linear problem finding an exact solution. A wide experimentation, with many examples, 
gave us the expected results. 
 
 

- an image is not a map, 1. INTRODUCTION 
- at least two images are needed for reconstructing an 

object. We would like to suggest an easy way for close range 
photogrametric image orientations. This work tried to solve the 
non-linear problems typical in the analytic photogrammetry. It 
is well known that the Absolute Orientation and the Relative 
one have non-linear functional models. Therefore they need 
respectively a transformation of the parameters able to 
transform the problem of the object reconstruction in a simple 
linear problem and an exhaustive research of the preliminary 
values (of parameters) for the model formation. This way of 
working makes the orientation procedures much more flexibles, 
and permits wide applications also in close range 
photogrammetry. 

 
A relation of rototraslation with scale variation constitutes the 
links between the coordinates of the point Q (x, y, z), in an 
image, and the coordinates of the corresponding point P (X, Y, 
Z), in the object. Both reference systems are traditionally a 
Cartesian reference system, but the same is true, with minor 
changes, using different reference system, suitable linked to the 
previous ones. Let us show the above mentioned relation: 
 



















−=
−
°
°

ji

jij

ij Ẑ
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Let us point out that close range photogrammetry is actually 
growing in importance. Indeed not only classical close range 
photogrammetry, e.g. for architectural and archaeological 
surveying as well as for industrial applications, but also data 
acquisition by equipped vehicles, and robots are nowadays 
typical data, largely diffused. Especially in the last cases, the 
need of real time (or quasi-real time) data processing and 
validation is very high. For these reasons, model formation and 
object reconstruction require the solutions of the problems of 
Relative Orientation and Absolute Orientation respectively, 
avoiding to waste time in an ‘a posteriori’ search of preliminary 
values. 

 
 
where   x°, y°, c = image coordinates and focal length 
  = coordinates of projection center 000 ΖΥΧ ˆ,ˆ ,ˆ

  = object coordinates ΖΥΧ ˆ,ˆ ,ˆ

  λ = scale factor, variable point by point 
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2. FROM IMAGES TO OBJECT VIA MODEL 

 
The main function of photogrammetry is the transformation of 
data from the image space to the object space. We can make 
this transformation in a direct way, with collinearity equations, 
or in two steps, with the formation of a model and, only in a 
second time, reconstructing the original object. First of all we 
have to take into consideration that: 

  
Figure 1.  Reference Photogrammetric Systems 
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3. PROJECTION TRANSFORMATION 
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3.1 

3.1.1 

Parameters 
 

The photogrametric technique is based on a transformation of a 
perspective (or a couple of perspectives) in a quoted orthogonal 
projection. In this transformation, we have non-linear 
parameters and, before starting the plotting, we need 
information about the preliminary value of those parameters. 
Our main aim is to find expressions working with parameters 
easy to be obtained. With two images, we can orient them; there 
are two different ways: a ‘one step’ way, or a ‘two steps’ one. 

 
In the previous expression, we use the Rodriguez Rational 
Matrix R: 
 

)SI()SI(R +−= −1    (7) 
 
where  I = Identity Matrix 
 S = Emisymmetric Matrix 
 The first procedure is based on collinearity equations and needs 

12 parameters: X1, Y1, Z1, X2, Y2, Z2 (coordinates of the two 
projection centers), and ω1, φ1, κ 1, ω2, φ2, κ2 (attituded angles 
of the two sensor). The second one separates the model 
formation (Relative Orientation) from the object reconstruction 
(Absolute Orientation). In this procedure, we define the 
problem of Absolute Orientation by means of 7 parameters:  tx, 
ty, tz (shift vector), λ (scale factor), Ω, Φ, K (Cardanic angles). 
On the contrary, to define the problem of Relative Orientation, 
we need 5 parameters: φ1, κ1, ω2, φ2, κ2 (Symmetric Relative 
Orientation), or by, bz, ω2, φ2, κ2 (Asymmetric Relative 
Orientation). 
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After these simple substitutions, we obtain a linear solution, 
showing the direct proportion between the model coordinates 

 and the object ones : )w,v,u(xx °°°= )Z,Y,X(yy =
 
   ( ) ( ) ( ) ( ) )xSIySI      xSISIRxy iiiii +=−⇒+−== −1

 
 (9) 

Absolute Orientation Parameters: A rational 
alternative to classical Rotation Matrix is the Rodriguez Matrix. 
This matrix permits to find the exact solution, thanks to the 
solution of a linear system, after a suitable substitution of 
variables. We will briefly try to explain how to solve a linear 
problem. We start from rototraslation in the space (being R a 
rotation matrix and t a shift vector), with a global scale 
variation λ, we compute the expected value of all equations and 
then we subtract it from the previous equations: 
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Reorganizing matrices and vectors, in a way which collects in a 
unique vector the three unknown parameters, coming from the 
above mentioned emismmetric matrix, we obtain the following 
final equation: 
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We manage to eliminate the shifting contribute; indeed it is 
possible to calculate it lately using the following expression: 

 
3.1.2 

 
xRyt λ−=      (3) 

Relative Orientation Parameters: Regarding the 
Relative Orientation we make an exhaustive research of the 
preliminary values, solving a linearized problem in all its 
possible cases. Notice that an exact solution has been recently 
found, but it leads to an equation of order four, which supplies 
four plausible solutions, as we can easily achieve by repeating a 
linearized problem via an exhaustive research. The Relative 
Orientation is based on the Coplanarity Condition. 

 
If we make the square of the second equation in the formulas 
number (2), we also find an expression very easy to calculate 
the scale factor: 
 

xx
yyxxRxRxyy T

T
TTTT =⇒== λλ 22 λ  (4) 

 

 
Now we have to make a substitution of variables in a way to 
transform the non-linear problem in a linear one: 
 

ii Rxy λ=      (5) 

It shows that the point P1, in the first image, and its homologue 
point P2, in the second image, have a unique corresponding 
point Q on the object. In case of Asymmetric Relative 
Orientation, we have to define by, bz, ω2, φ2, κ2, which are the 
parameters of position and attitude of the second image, 
compared to those of the first image. Notice that bx is already 
defined in the Absolute Orientation, as the scale factor λ. In 
case of Symmetric Relative Orientation, we have to define φ1, 
κ1, ω2, φ2, κ2, parameters which represent parameters of 
position and attitude of the two images. Notice that ω1 is missed 
because it is already defined in the Absolute Orientation, as the 
global attitude angle Ω. 

 
With a further substitution, we obtain our linear system of 
equations: 
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Figure 2.  Coplanarity Condition 
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The exhaustive research explored  
possible configurations. For each case, a linear system was 
solved, using the values of this configuration (case), as 
preliminary values of the parameters of the Symmetric Relative 
Orientation. 

1280085885  =××××

Examples were carried out in all the middle points of the 
possible configuration. Considering the 5 parameters of the 
Symmetric Relative Orientation, the angles κ1, ω2, κ2 are defined 
in a complete rotation (8 configurations), whilst ϕ1, ϕ2 are 
defined in a half rotation (5 configurations), which led to the 
above mentioned 12800 cases. 
 
Each linear system solution gave us the estimate parameters for 
the Symmetric Relative Orientation. The convergence to 
admissible values is when σ0 is small enough. Considering only 
the distinct solutions, we found four analytical acceptable 
configurations. 

 
 

4. MODEL CONSTRUCTION  
 

For the Relative Orientation, we should have previous 
information about the preliminary values of the parameters. It is 
not always possible to know them, before the plotting. Let us 
point out that non-conventional photogrammetry implies often 
camera acquisition without classical surveying measurement.  If 
we consider the classical Symmetric procedure of Relative 
Orientation, we can make an exhaustive research of all possible 
preliminary parameters, because we work in a closed group (in 
the topological sense) of values compared to the rotations in the 
space. 

 
 
 
 
 
 
 
 
 
 

  
The convergence of linearization of trigonometric functions is 
acceptable as far as values lower or near Π/4. Therefore we 
decided to explore all the admissible values for rotation angles 
with a step of Π/4, as shown below: 

 
 
 
 

  
 

ϕ1  k1 ω2 ϕ2 k2 

Π /2      

Π /4  •   •  

0 • • • • • 

Π /4 • • • • • 

Π /2  • •  • 

3Π /4  • •  • 

Π   • •  • 

5Π /4  • •  • 

3Π /2  • •  • 

7Π /4  • •  • 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  The 4 final possible configurations 
 

These configurations are really different, so it is not so difficult 
to have information about the initial position of the images, in 
every specific case. Selecting the chosen case, it is possible to 
calculate the estimate parameters for the expected Symmetric 
Relative Orientation. 

 
Table 1.  Exhaustive Research for Symmetric Relative 

Orientation parameters 
 

where   k1≡0 if  ϕ ≡±Π /2 and/or k2≡0 if  ϕ2≡±Π /2 Notice that in the Asymmetric procedure of Relative 
Orientation, we have two shift parameters to be searched, but 
the group of shifting is not a closed one, so we had to use a 
different way to find the preliminary values. However with the 
following relations is possible to transform the Symmetric 
Relative Orientation parameters in the Asymmetric ones, and 
viceversa: 

 
As known, if the ϕ angle is around ±Π/2, we can not 
individuate the k rotation, which is fixed equal to zero. Indeed 
in the polar zones (we assumed their range in a circle of one 
degree), the two angles are identical or quasi identical, and this 
fact produced singularity or ill-conditioning. 
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5. OBJECT RECONSTRUCTION 

In our procedure for the Absolute Orientation, the object 
reconstruction does not need preliminary parameters, because 
we can reach the exact solution, by solving the linear system, 
mentioned in an above paragraph. We tested this procedure, 
considering 208 possible configurations. These cases come 
from an object rotation following the global attitude angles (Ω, 
Φ, Κ), with a step of Π/4. Exam was performed analyzing the 
rotation in the space of a cube with 27 control points, regularly 
distributed.  
 
 

6. NUMERIC EXPERIMENTS 

To verify precision, accuracy and reliability of these 
techniques, a program in Fortran 95 language (compiled and 
assembled with Lahey-Fujitsu Fortran 95 version 5.6) was 
written, implemented and tested. It runs on a Pentium 3 PC, 
with 933 MHz – 262 Mb / RAM – 30 Gb / Hard Disk. The 
exhaustive research for the Symmetric Relative Orientation 
works in 4 - 5 seconds, while all others procedures are 
immediate. In all the examples, we introduced random errors, 
with standard deviation of 20 µm, as usual in photogrammetry. 
Here we present an explanation of these programs: 
 
ORPHO_ it converts Cardanic angles in Eulerian angles and 
viceversa. This is a very large used transformation in close 
range photogrammetry, because it is essential for the image 
orientation, when the rotation angles are acquired by surveying 
measurements. 
 
ORSYM_ it calculates the preliminary values for the 
Symmetric Relative Orientation. It solves 12800 linear 
problems, exploring all possible configurations in the space, 
with a step of Π/4. The same program, choosing one of the four 
distinct solutions, permits to calculate the preliminary 
parameters for the Asymmetric Relative Orientation. 
 
ORELA_ it calculates the adjusted parameters of the 
Asymmetric Relative Orientation, starting from its preliminary 
ones. If these preliminary values are unknown at the data 
acquisition, it is possible to get them from the results of the 
previous program. On the contrary, if they are already known, it 
is possible to transform the Eulerian angles, more frequently 
and easily acquired, into the Cardanic ones, by means of 
ORPHO program. 
 
ORABS_ it calculates the adjusted Absolute Orientation 
parameters. They are calculated with a simple substitution of 
variables, able to transform the non-linear problem of the 
Absolute Orientation in a linear one. 
 
In the following flowchart, let us summarize the global 

procedure for the orientation of two images. 
 
Surveying mearurement and Non-conventional 
(classical) photogrammetry photogrammetry 
 
 
 
              ORPHO     ORSYM 
 
 
 
 
              ORELA    Selection of an 
  acceptable solution 
 
 
              ORABS 
 
 
 
 
               Plotting 
 
As evident, the analysis of the performance of the single 
programs and of the global procedure was quite heavy. Indeed 
it needed a long preparation of tools, which permitted to 
manage files of commands. Furthermore many different levels 
were prepared in order to collect, save and store the output files 
for the different steps. 
 
Before to conclude we wish to presents some results of these 
experiments. We considered robust statistical index (mode, 
median, 1st and 3rd quantiles), able to analyze distribution free 
problems. On the following tables and figures, the difference 
among the nominal values and the preliminary ones are shown. 
 
 Ω Ψ Κ 
mode 17 1 0 
percentile 0,25 10 5 10 
median 21 13 22 
percentile 0,75 38 25 39 
max 93 56 86 

 
Table 2.  Absolute Orientation results 
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Figure 4.  Absolute Orientation results 

 
For the Absolute Orientation, we reached small values, less than 
1/100 of grade. 
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 ∆φ1 ∆κ1 ∆ω2 ∆φ2 ∆κ2 
mode 8 5 8 7 7 
percentile 
0,25 18 11 33 16 22 

median 46 41 91 36 53 
percentile 
0,75 84 99 176 68 139 

max 287 569 937 286 827 
 

Table 3.  Symmetric Relative Orientation results 

 
Figure 5.  Symmetric Relative Orientation results 

 
For the Relative Orientation (but for the Polar Regions), we 
reached again small values, less than 1/10 of grade. These 
values are bigger that the previous ones, but we have to 
underline that we worked only with preliminary values. 
 
 ∆φ1 ∆κ1 ∆ω2 ∆φ2 ∆κ2 
mode 96 491 208 14 275 
percentile 
0,25 36 224 362 19 250 

median 68 432 760 47 514 
percentile 
0,75 102 682 1301 98 862 

max 165 2205 2937 251 1895 
 
Table 4.  Symmetric Relative Orientation results (Polar regions) 
 

 
Figure 6. Symmetric Relative Orientation results (Polar regions) 
 
For the Symmetric Relative Orientation, in the Polar Regions, 
we reached once more small values, less than 3/10 of grade. 
These values are bigger that the previous ones, but we have to 

underline that we worked with preliminary values and we 
explored the Polar Regions, i.e. a very critical zone. 
 

7. CONCLUSION 

New programs, which would permit an easy solution for the 
Relative and Absolute Orientations, gave very satisfied 
expected results. This procedure has great potenciality for non-
conventional data acquisition ( eg. non-professional images, 
images coming from unknown and old sources, equipped 
vehicles, robots, and many other applications in close range 
photogrammetry). The advantage of a linear Absolute 
Orientation should also taken into account. Moreover even if 
the solution achieved in the Relative Orientation requires an 
exhaustive research, it is again quick and easy, and seems to 
solve positively the problem how to acquire the preliminary 
values of the Relative Orientation parameters. 
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APPENDIX A 

In this appendix, as well as the following one, it is briefly 
reported very know formulas and relations, in order to help the 
reader to recognize what presented and explained in the 
previous paragraphs. Therefore taking into account the attitude 
angles, the following matrices represent the rotation matrices 
written respectively with the Cardanic angles and Eulerian 
ones: 
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(12) 
 

It is easy to derive the attitude angles from both matrices, 
noting that particular care is required in the Polar Regions due 
to the well know singularity of the rotation group in the space. 
Moreover the rotation matrix is obviously unique, for that 
reason this matrix allows for passing from the Cardanic angles 
to the Eulerian ones, and viceversa. 

Furthermore as already explained, an advantageous alternative 
to the classical rotation matrix is given by the Rodriguez 
Rational Matrix: 
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where its parameters generally have not any physical sense. 

 

APPENDIX B 

This appendix wants to present, very shortly, the analytical 
definition of the coplanarity condition, both in the Asymmetric 
configuration and in the Symmetric one. 

The first case points out the coplanatity of four points, i.e. two 
projection centers and two image points, of a unique object 
point, in two different images: 
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The same condition leads to an easier expression, which points 
out the coplanarity condition of three vectors: the baseline, the 
direction from the first image point to the observed object point 
and the direction from the second image point to the same 
observed object point: 
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Thus the calculation of this determinant leads to the following 

relation, know as coplanarity condition for the Asymmetric 
configuration: 

 

( ) ( ) ( 02121221221 =−++−+ ξηξζηζ yxbcxbcyb zyx )  ( 1 6 )  
 

In the same way, assuming the same coplanarity condition of 
the same four points, in a different reference system, given by 
the Symmetric configuration: 
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and passing to the analogous coplanarity condition of the same 
three vectors, under the same (Symmetric) condition: 
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the calculation of this determinant leads to the following 
relation, know as coplanarity condition for the Symmetric 
configuration: 

 

02121 =− ηζζη     (19) 
 

The general form of the two linearized coplanarity conditions 
are omitted, in sake of brevity, but it is not so difficult to derive 
them, taking into account the derivatives of the rotation matrix, 
respect to the attitude angles. 
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