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ABSTRACT:

The automatic co-registration of point clouds, representing 3D surfaces, is a relevant problem in 3D modeling. This registration
problem can be defined as a surface matching problem. We treat it as least squares matching of overlapping surfaces. The point
cloud may have been digitized/sampled point by point using a laser scanner device, a photogrammetric method or other surface
measurement techniques. In the past, several efforts have been made concerning the registration of 3D point clouds. One of the most
popular methods is the Iterative Closest Point (ICP) algorithm. Several variations and improvements of the ICP method have been
proposed. In photogrammetry there have been some studies on the absolute orientation of stereo models using DEMs (Digital
Elevation Model) as control information. These works are known as DEM matching, which corresponds mathematically with least
squares image matching. The DEM matching concept is only applied to 2.5D surfaces. 2.5D surfaces have limited value, especially
in close range applications. Our proposed method estimates the 3D similarity transformation parameters between two or more fully
3D surface patches, minimizing the Euclidean distances between the surfaces by least squares. This formulation gives the
opportunity of matching arbitrarily oriented 3D surface patches. An observation equation is written for each surface element on the
template surface patch, i.e. for each sampled point. The geometric relationship between the conjugate surface patches is defined as a
7-parameter 3D similarity transformation. The constant term of the adjustment is given by the observation vector whose elements are
the Euclidean distances between the template and search surface elements. Since the functional model is non-linear, the solution is
iteratively approaching to a global minimum. The unknown transformation parameters are treated as stochastic quantities using
proper weights. This extension of the mathematical model gives control over the estimation parameters. Furthermore, some
experimental results based on registration of close-range laser scanner and photogrammetric point clouds will be presented. This new
surface matching technique is a generalization of the least squares image matching concept and offers high flexibility for any kind of

3D surface correspondence problem, as well as statistical tools for the analysis of the quality of the final results.

1. INTRODUCTION

Laser scanners can measure directly 3D coordinates of huge
amounts of points in a short time period. Since the laser scanner
is a line-of-sight instrument, in many cases the object has to be
scanned from different viewpoints in order to completely
reconstruct it. Because each scan has its own local coordinate
system, all the local point clouds must be transformed into a
common coordinate system. This procedure is usually referred
to as registration. Actually the registration is not a specific
problem to the laser scanner domain. Since the problem is more
general than the given definition, the emphasis of our work is to
investigate the most general solution of the registration problem
on a theoretical basis.

In the past, several efforts have been made concerning the
registration of 3D point clouds, especially in the Computer
Vision area. One of the most popular methods is the lterative
Closest Point (ICP) algorithm developed by Besl and McKay
(1992), Chen and Medioni (1992), and Zhang (1994). The ICP
is based on the search of pairs of nearest points in the two sets,
and estimating the rigid transformation, which aligns them.
Then, the rigid transformation is applied to the points of one
set, and the procedure is iterated until convergence. The ICP
assumes that one point set is a subset of the other. When this
assumption is not valid, false matches are created, that
negatively influence the convergence of the ICP to the correct
solution (Fusiello et al., 2002). Several variations and
improvements of the ICP method have been made (Masuda and
Yokoya, 1995, Bergevin et al., 1996), but several problems still
remain. From a computational expense point of view it is highly
time consuming due to the exhaustive search for the nearest
point (Sequeira, et al., 1999). Another problem is that it
requires every point in one surface to have a corresponding
point on the other surface. An alternative approach to this

search problem was proposed by Chen and Medioni (1992).
They used the distance between the surfaces in the direction
normal to the first surface as a registration evaluation function
instead of point-to—nearest point distance. This idea was
originally proposed by Potmesil (1983). In (Dorai et al., 1997)
the method of Chen and Medioni was extended to an optimal
weighted least-squares framework. Zhang (1994) proposed a
thresholding technique using robust statistics to limit the
maximum distance between points. Masuda and Yokoya (1995)
used the ICP with random sampling and least median square
error measurement that is robust to a partially overlapping
scene. Okatani and Deguchi (2002) propose the best
transformation of two range images to align each other by
taking into account the measurement error properties, which are
mainly dependent on both the viewing direction and the
distance to the object surface. The ICP algorithm always
converges monotonically to a local minimum with respect to the
mean-square distance objective function (Besl and McKay,
1992). Even if good initial approximations for the
transformation parameters are provided, in some cases it might
converge to a wrong solution due to its closest point (or tangent
plane) search scheme. It does not use the local surface gradients
in order to direct the solution to a global minimum. Another
deficiency of the ICP method is to be not able to handle multi-
scale range data.

In (Turk and Levoy, 1994) a method for combining a collection
of range images into a single polygonal mesh that completely
describes the object was proposed. This method first aligns the
meshes with each other using a modified ICP, and zippers
together adjacent meshes to form a continuous surface that
correctly captures the topology of the object. Curless and Levoy
(1996) proposed a volumetric method for integration of the
range images. Two other volumetric approaches were given in
(Pulli et al., 1997, Hilton and Illingworth, 1997).



A quite different registration approach has been proposed in
(Johnson and Hebert, 1998, Johnson and Hebert, 1999).
Pairwise registration is accomplished using spin images, an
alternative representation finding point correspondence. The
final transformation is refined and verified using a modified ICP
algorithm. To generate the spin image of a point in a 3D point
cloud, a local basis is computed at an oriented point (3D point
with surface normal) on the surface of an object represented as a
polygonal surface mesh. The positions with respect to the basis
of other points on the surface of the object can then be
described by two parameters. By accumulating these parameters
in a 2D array, a descriptive image associated with the oriented
point is created. Because the image encodes the coordinates of
points on the surface of an object with respect to the local basis,
it is a local description of the global shape of the object and is
invariant to rigid transformations (Johnson and Hebert, 1998).
In (Guarnieri et al., 2003) spin images were used for the
automatic detection of common areas, and initial alignment
between the range image pairs.

The Iterative Closest Compatible Point (ICCP) algorithm has
been proposed in order to reduce the search space of the ICP
algorithm (Godin et al., 1994, Godin and Boulanger, 1995,
Godin et al., 2001). In the ICCP algorithm, the distance
minimization is performed only between the pairs of points
considered compatible on basis of their viewpoint invariant
attributes (normalized color/intensity, curvature, and other
attributes). In (Sharp et al., 2002) a conceptually similar method
called Iterative Closest Points using Invariant Features (ICPIF)
was introduced. This method chooses nearest-neighbor
correspondences according to a distance metric, which is a
scaled sum of the positional and feature distances. Roth (1999)
proposed a method that exploits the intensity information
supplied by the laser scanner device. It firstly finds the points of
interest in the intensity data of each range image using and
interest operator. Then, the 3D triangles, which are constructed
by 2D interest points, are matched. In (Stamos and Leordeanu,
2003) another feature based registration approach, which
searches the line and plane pairs in 3D point cloud space
instead of 2D intensity image space, was adopted. The pairwise
registrations generate a graph, in which the nodes are the
individual scans and the edges are the transformations between
the scans. Finally, the graph algorithm registers each individual
scan with respect to a central pivot scan. There can be found
many other feature-based ICP approaches in the literature
(Chua and Jarvis, 1996, Feldmar and Ayache, 1996, Higuchi et
al.,, 1995, Soucy and Ferrie, 1997, Thirion, 1996, Vanden
Wyngaerd, et al., 1999, Yang and Allen, 1998).

In (Silva et al., 2003) Genetic Algorithms (GA) in combination
with hill-climbing heuristics were applied to range image
registration problem. In addition, some comparative studies of
ICP variants have been made (Rusinkiewicz and Levoy, 2001,
Dalley and Flynn, 2002). A highly detailed survey on the
registration methods as well as recognition and 3D modeling
techniques is given in (Campbell and Flynn, 2001).

Since most of the developed range image registration methods
need an initial approximate alignment, there have been made
some works on the pre-alignment. In (Murino et al., 2001) a
method based on 3D skeletons is introduced. 3D skeletons first
extracted from both range images, and matched each other in
order to find the pre-alignment. A frequency domain technique
based on Fourier transformation is given in (Lucchese et al.,
2002) as a pre-alignment method, also. An automatic pre-
alignment method without any prior knowledge of the relative
viewpoints of the sensor or the geometry of the imaging process

is given in (Vanden Wyngaerd and Van Gool, 2002). It matches
bitangent curve pairs, which are pairs of curves that share the
same tangent plane, between two views. An interesting and
problem specific pre-alignment method is given in (Sablatnig
and Kampel, 2002). They present a method that pre-aligns the
front- and backviews of rotationally symmetric objects, which
are archeological ceramic fragments, using 3D Hough
transformation. An identical voting scheme (Habib and Schenk,
1999) based on Hough technique was used in order to find the
initial approximations of the unknown 3D similarity
transformation parameters between two overlapped airborne
point clouds. This method can solve the transformation
parameters in parameter space without point correspondence.
The final registration is achieved using a similar method to
Chen and Medioni’s (1992) point-to-normal distance error
minimization formula.

The well known approach for the multiple range image
registration is to sequentially apply pairwise registration until
all views are combined. Chen and Medioni (1992) proposed a
method, which registers successive views incrementally with
enough overlapping area. Each next view is registered and
merged with the metaview, which is the topological union of the
former pairwise registration. In (Blais and Levine, 1995)
couples of images are incrementally registered together with a
final registration between the first and last view. It is based on
reversing the range finder calibration process, resulting in a set
of equations which can be used to directly compute the location
of a point in a range image corresponding to an arbitrary point
in three dimensional space. Another multi image registration
method based on inverse calibration, called lterative Parametric
Point (IPP), is given in (Jokinen and Haggren, 1995). In
(Bergevin et al., 1996) an algorithm, which considers the
network of views as a whole and minimizes the registration
errors of all views simultaneously, is introduced. This leads to a
well-balanced network of views in which the registration errors
are equally distributed. Pulli (1999) proposed to use the
pairwise alignments as constraints that the multiview step
enforces while evenly diffusing the pairwise registration errors.
In this work enforcing the pairwise alignments as constraint is
called as virtual mate. In (Dorai et al., 1998) a seamless
integration method based on weighted averaging technique for
the registered multiview range data to form an unbroken surface
is proposed. In (Eggert et al., 1998) a force based optimization
technique for simultaneous registration of multiview range
images is introduced. They announced that the final registration
accuracy of their method typically approaches less than 1/4 of
the interpoint sampling resolution of the range image.

Williams and Bennamoun (2001) proposed a new technique
from the analytical calculation point view for the simultaneous
registration of multiple point sets. The global point registration
technique presented in this paper is a generalization of Arun et
al.’s (1987) well known pairwise registration method, which
uses the Singular Value Decomposition (SVD) to compute the
optimal registration parameters in the presence of point
correspondences. This method is a closed-form solution for 3D
similarity transformation between two 3D point sets. It first
reduces the unknown translation parameters shifting the all
points to the center of gravity, and calculates the unknown
rotation matrix using SVD of a 3x3 matrix, and finally
calculates the translation parameters. During that time a similar
method had been developed independently in MIT (Horn et al.,
1988). But as pointed out by Horn et al. (1988) these methods
were not entirely novel, since the same problem had already
been treated in the Psychometry (Quantitative Psychology)
literature (Schonemann, 1966, Schonemann and Carroll, 1970)



in the name of Procrustes Analysis. An interesting note here is
that the mathematical background of SVD, innovated by Eckart
and Young (1936), comes from Psychometry area. It is also
known as Eckart-Young Decomposition. From the mathematical
point of view a similar method to Williams and Bennamoun’s
(2001) proposal is given in (Beinat and Crosilla, 2001). They
propose the Generalized Procrustes Analysis as a solution for
the multiple range image registration problem in the presence of
point correspondences. More details for the Procrustes Analysis
can be found in (Crosilla and Beinat, 2002). A further stochastic
model taking into account for different a priori accuracy of the
tie point coordinate components was proposed by Beinat and
Crosilla (2002). In fact both of the presented methods (Williams
and Bennamoun, 2001, Beinat and Crosilla, 2001) use Gaufs-
Seidel or Jacobi type iteration techniques in order to register
multiple range images simultaneously. Photogrammetric block
adjustment by independent models method has been proposed
as another solution (Scaioni and Forlani, 2003) in the literature.

Masuda (2002) propose a method to register multiple range
images using the signed distance field (SDF), which is a scalar
field determined by the signed distance of an arbitrary 3D point
from the object surface. In (Krsek et al., 2002) an automatic
hybrid registration algorithm is presented. It works in a bottom-
up hierarchical mode: points — differential structures — surface.
The final refinement of the estimation is carried out using
Iterative Closest Reciprocal Point (ICRP) algorithm (Pajdla and
Van Gool, 1995). In (Castellani et al., 2002) a multiple range
image registration method is given for 3D reconstruction of
underwater environment from multiple acoustic range views
acquired by a remotely operated vehicle. In addition, several
reviews and comparison studies for the multiple range image
registration are available in the literature (Jokinen and Haggren,
1998, Williams et al., 1999, Cunnington and Stoddart, 1999).

In (Dijkman and van den Heuvel, 2002) a semi automatic
registration method based on least squares fitting the parameters
of the models (cylinder and plane) is introduced. The
registration is performed using the parameters of the models
measured in different scans. The Global Positioning System
(GPS) is also used to determine the 3D coordinates of the
homologous points, which are used to merge the different scans
(Balzani et al., 2002). Use of GPS allows combining all scans in
a common system even if they do not have overlapping parts.
To solve the point correspondence problem between two laser
scanner point cloud before the 3D similarity transformation, an
automatic method was proposed based on the assumption that
the Z axis of two scans are vertical (Bornaz et al., 2002). In this
work retro-reflective targets, which are attached on the object
surface before the scanning process, are used as common points.
The idea is to search the homologous points based on two
spherical coordinates (range and elevation), whose the system
are constructed in both sets of points choosing a point as origin.
A similar automatic method has been given in (Akca, 2003)
using the template shaped targets. In this work the space angles
and the distances are used to solve the point correspondence
problem, since they are translation and rotation invariant
parameters among the different laser scanner viewpoints. The
ambiguity problem, which is rare but theoretically and
practically possible, is solved using consistent labeling by
discrete relaxation.

This fairly exhaustive description of related research activities
and achievements demonstrates the relevance of the problem.
Also, we notice that still a satisfying solution has to be found,
tested and implemented.

Since 3D point clouds derived by any method or device
represent the object surface, the problem should be defined as a
surface matching problem. In Photogrammetry, the problem
statement of surface patch matching and its solution method
was first addressed by Gruen (1985a) as a straight extension of
Least Squares Matching (LSM).

There have been some studies on the absolute orientation of
stereo models using DEMs as control information. This work is
known as DEM matching. The absolute orientation of the
models using DTMs as control information was first proposed
by Ebner and Mueller (1986), and Ebner and Strunz (1988).
Afterwards, the functional model of DEM matching has been
formulated by Rosenholm and Torlegard (1988). This method
basically estimates the 3D similarity transformation parameters
between two DEM patches, minimizing the least square
differences along the Z axes. Several applications of DEM
matching have been reported (Karras and Petsa, 1993, Pilgrim,
1996, Mitchell and Chadwick, 1999, Xu and Li, 2000). Maas
(2000) successfully applied a similar method to register
airborne laser scanner strips, among which vertical and
horizontal discrepancies generally show up due to GPS/INS
accuracy problems. Another similar method has been presented
for registering surfaces acquired using different methods, in
particular, laser altimetry and photogrammetry (Postolov,
Krupnik, and Mclntosh, 1999). Furthermore, techniques for
2.5D DEM surface matching have been developed, which
correspond mathematically with Least Squares Image Matching.
The DEM matching concept can only be applied to 2.5D
surfaces, whose analytic function is described in the explicit
form, i.e. z = f(x,y). Of course, this formulation has several
problems in the matching of solid (3D) surfaces.

Although the registration of 3D point clouds is a very active
research area in both Computer Vision and Photogrammetry,
there is not such a method that has a complete capability to the
following three properties: matching of multi-scale data sets,
matching of real 3D surfaces without any limitation, fitting the
physical reality of the problem statement as good as possible.
The proposed work completely meets these requirements.

The Least Squares Matching concept had been applied to many
different types of measurement and feature extraction problems
due to its high level of flexibility and its powerful mathematical
model: Adaptive Least Squares Image Matching (Gruen, 1984,
Gruen, 1985a), Geometrically Constrained Multiphoto
Matching (Gruen and Baltsavias, 1988), Image Edge Matching
(Gruen and Stallman, 1991), Multiple Patch Matching with 2D
images (Gruen, 1985b), Multiple Cuboid (voxel) Matching with
3D images (Maas, 1992, Maas and Gruen, 1995), Globally
Enforced Least Squares Template Matching (Gruen and
Agouris, 1994), Least Squares B-spline Snakes (Gruen and Li,
1996). For a detailed survey the authors refer to (Gruen, 1996).
If 3D point clouds derived by any device or method represent
an object surface, the problem should be defined as a surface
matching problem instead of the 3D point cloud matching. In
particular, we treat it as least squares matching of overlapping
3D surfaces, which are digitized/sampled point by point using a
laser scanner device, the photogrammetric method or other
surface measurement techniques. This definition allows us to
find a more general solution for the problem as well as to
establish a mathematical model in the context of LSM.

Our proposed method, Least Squares 3D Surface Matching
(LS3D), estimates the 3D transformation parameters between
two or more fully 3D surface patches, minimizing the Euclidean
distances between the surfaces by least squares. This
formulation gives the opportunity of matching arbitrarily



oriented 3D surface patches. An observation equation is written
for each surface element on the template surface patch, i.e. for
each sampled point. The geometric relationship between the
conjugate surface patches is defined as a 7-parameter 3D
similarity transformation. This parameter space can be extended
or reduced, as the situation demands it. The constant term of the
adjustment is given by the observation vector whose elements
are Euclidean distances between the template and search surface
elements. Since the functional model is non-linear, the solution
is iteratively approaching to a global minimum. The unknown
transformation parameters are treated as stochastic quantities
using proper weights. This extension of the mathematical model
gives control over the estimation parameters. The basics of the
mathematical modeling of the proposed method, the
convergence behaviour, and the statistical analysis of the
theoretical precision of the estimated parameters are explained
in the following section. The experimental results based on
registration of close-range laser scanner and photogrammetric
point clouds are presented in the third section. The conclusions
are given in the last section.

2. LEAST SQUARES 3D SURFACE MATCHING
2.1 The Estimation Model

Assume that two different surfaces of the same object are
digitized/sampled point by point, at different times (temporally)
or from different viewpoints (spatially). f(x,y,z) and g(x,y,z) are
conjugate regions of the object in the left and right surfaces
respectively. The problem statement is finding the
correspondent part of the template surface patch f(x,y,z) on the
search surface g(x,y,z).

f(x,y,2) = g(x,y,2) ()

According to Equation (1) each surface element on the template
surface patch f(x,y,z) has an exact correspondent surface
element on the search surface patch g(x,y,z), if both of the
surface patches would be continuous surfaces. In order to model
the random errors, which come from the sensor, environmental
conditions or measurement method, a true error vector e(X,y,z)
has to be added.

f(X, y,Z) - C(X, y,Z) = g(X, y’Z) (2)

The matching is achieved by minimizing a goal function, which
measures the Euclidean distances between the template and the
search surface elements. Equation (2) is considered observation
equations, which functionally relate the observations f(x,y,z) to
the parameters of g(x,y,z). The final location is estimated with
respect to an initial position of g(x,y,z), the approximation of
the conjugate search surface patch g’(x,y,z).

To express the geometric relationship between the conjugate
surface patches, a 7-parameter 3D similarity transformation is
used. Depending on the deformation between the template and
the search surfaces, the geometric relationship could be defined
using any other type of 3D transformation methods, e.g. a 12-
parameter affine, 24-parameter tri-linear, or 30-parameter
family of quadratic transformations.

The related linearized observation equations have been derived
and are available to us. They result in the following linear
system for Least Squares estimation:

-e=Ax-( , P 3)
where A is the design matrix, X is the parameter vector, and / is

the observation vector. With the statistical expectation operator
E{} and the assumptions
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the system (3) and (4) is a Gaup-Markov estimation model. The
unknown 3D similarity transformation parameters are treated as
stochastic quantities using proper weights. This extension gives
advantages of control over the estimating parameters (Gruen,
1986). In the case of poor initial approximations for unknowns
or badly distributed 3D points along the principal component
axes of the surface, some of the unknowns, especially the scale
factor, may converge to a wrong solution, even if the scale
factors between the surface patches are same.

—e, =Ix-/¢, , P, (5)

The least squares solution of the joint system Equations (3) and
(5) gives the unbiased minimum variance estimation for the
parameters

x=(A"TPA+P,)'(ATP/+P,¢,) solution vector (6)

2 v Pv+ ngbe .

6p=—— variance factor @)
r

v=AXx—/ residual vector for surface observations ®)

v, =Ix—/, residual vector for additional observations  (9)
where ” stands for the Least Squares (LS) estimator. The
function values g(x,y,z) in Equation (2) are actually stochastic
quantities. This fact is neglected here to allow the use of the
Gaup-Markov model and to avoid unnecessary complications,
as typically done in LSM (Gruen, 1985a).

Since the functional model is non-linear, the solution iteratively
approaches to a global minimum. In the first iteration the initial
approximations for the parameters must be provided. The
iteration stops if each element of the alteration vector X in
Equation (12) falls below a certain limit:

ldpi|<c . i={12,..7} (10)
The theoretical precision of the estimated parameters can be
evaluated by means of the covariance matrix

K, =6.Q, =6.N"'=6}(A"TPA+P,)" 11

The calculation of the numeric derivative terms depends on the
analytical representation of the surface elements. We represent
the search surface elements as planar surfaces and optionally, as
parametric bi-linear surface patches, which are fitted to 3 and 4
neighbouring knot points, respectively.

2.2 Precision and Reliability Issues

The standard deviations of the estimated transformation
parameters and the correlations between themselves may give
useful information concerning the stability of the system and
quality of the data content (Gruen, 1985a).

61) = 60\] Qp > dpp € Qux (12)

As pointed out in (Maas, 2000), the estimated standard
deviations of the translation parameters are too optimistic due to
stochastic properties of the search surface. Because of the high
level redundancy of a typical data arrangement, a certain
amount of occlusions and/or outliers do not have significant
effect on the estimated parameters. Baarda’s data-snooping
method can be favourably used to localize the occluded or gross
erroneous measurements.



2.3 Computational Aspects

The computational complexity is of order O(N?), where N is the
number of employed points in the matching process. The actual
problem is to search the correspondent element of the template
surface on the search surface patch, whereas the adjustment part
is a small system, and can quickly be solved using back-
substitution followed by Cholesky decomposition. Searching
the correspondence is an algorithmic problem, and needs
professional software optimization techniques and programming
skills, which are not within the scope of this paper.

Since the method needs initial approximations of the unknowns
due to the non-linear functional model, one of the methods for
pre-alignment in the literature (Habib and Schenk, 1999,
Murino et al., 2001, Lucchese et al., 2002, Vanden Wyngaerd
and Van Gool, 2002) should be utilized. In the case of multi-
resolution data sets, in which point densities are significantly
different on the template and search surface patches, higher
degree C' continuous composite surface representations, e.g. bi-
cubic Hermit surface (Peters, 1974), should give better results,
of course increasing the computational expenses.

2.4 Convergence of Solution Vector

In a standard LS adjustment calculus in geodesy and
photogrammetry, the function of the unknowns is unique,
exactly known, and analytically continuous everywhere, e.g. the
collinearity equations in the bundle adjustment. Here the
function g(x,y,z) is discretized by using a definite sampling rate,
which leads to slow convergence, oscillations, even divergence
in some cases with respect to the standard adjustment. The
convergence behaviour of the proposed method basically
depends on the quality of the initial approximations and quality
of the data content, and it usually achieves the solution after 4t
or 5™ iterations (Figure 1), as typically in LSM.
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Figure 1: Typical examples for fast convergence (a) and slow
convergence (b). Note that scale factor is fixed to unity.

3. THE EXPERIMENTAL RESULTS

Two practical examples are given to show the capabilities of the
method. All experiments were carried out using own self-
developed C/C++ software that runs on Microsoft Windows®
OS. Processing times given in Table 1 were counted on such a
PC, whose configuration is Intel® P4 2.53 GHz CPU, 1 GB
RAM. The first example is the registration of three surface
patches, which were photogrammetrically measured 3D point
clouds of a human face from multi-images (Figure 2). For the
mathematical and implementation details of this automatic
surface measurement method the authors refer to (D’Apuzzo,
2002).

Left and right template surface patches (Figure 2-a and 2-c)
were matched to the centre search surface patch (Figure 2-b) by
use of LS3D. Since the data set already came in a common
coordinate system, the rotation angles (®,p,k) of the template
surfaces were deteriorated by ~10® in the first iteration.
Numerical results of the matching of the left surface and the
right surface patches are given at parts I-L and I-R of Table 1
respectively. Relatively high standard deviations for the
estimated t, and ¢ (note that high physical correlation between x
and ¢ due to a conventional axes configuration) exhibit the
narrow overlapping area along the x-axis, nevertheless the
matching result is successful. The estimated o, values prove the
accuracy potential of the surface measurement method, given as
0.2 mm by D’ Apuzzo (2002).

Figure 2: (a) left-template surface, (b) centre-search surface, (c)
right-template surface, (d) obtained 3D point cloud after LS3D
surface matching, (e) shaded view of the final composite
surface.

The second experiment refers to the matching of two
overlapping 3D point clouds (Figure 3), which are a part of a
chapel in Wangen, Germany, and were scanned using IMAGER
5003 terrestrial laser scanner (Zoller+Frohlich). Initial
approximations of the unknowns were provided by interactively
selecting 3 common points on the both surfaces before the
matching. Obtained results are given at part Il of Table 1. The
estimated o, gives valuable information about the sensor noise
level and the accuracy limit of the scanner as >1.7 mm.

The parametric bi-linear surface representation gives a slightly
better convergence rate and a better a posteriori sigma value
than the triangle plane representation, while increasing the
computational expenses. The standard deviation of the z-
component of the translation vector shows the excellent data
content in the depth direction, but the relative precision is
highly optimistic, which is ~1/1000 of the point spacing.



Since LS3D reveals the sensor noise level and accuracy
potential of any kind of surface measurement method or device,
it should be used for comparison and validation studies.

(@ (b)

Figure 3: (a) top - template surface patch, (a) bottom - search
surface patch, (b) overlay of the shaded surfaces.

Table 1: Experimental results

s n i t d 6, 64/6,/6, 6,/6,/6,
S€C mm mm mm C
I-LL P 2497 7 06 1.5 0.19 0.15/0.07/0.05 0.96/2.44/1.90
B 7 1.3 0.19 0.15/0.07/0.05 0.96/2.42/1.91
I-R P 3285 6 05 1.5 0.21 0.13/0.03/0.05 0.68/2.25/1.73
B 6 14 0.21 0.13/0.03/0.05 0.69/2.26/1.75
I P 13461 5 3.8 10 1.74 0.23/0.62/0.01 0.69/0.17/0.46
B 4 56 1.72 0.22/0.61/0.01 0.69/0.17/0.46

I-L: left face surface , I-R: right face surface, II: laser scanner data
s: surface representation, P: plane, B: bi-linear surface, n: number of
employed points, i: iterations, t: process time, d: ~ point spacing

4. CONCLUSIONS

LSM is a fundamental measurement algorithm and has been
applied to a great variety of data matching problems due to its
strong mathematical model. Two well-known ones are LS image
matching in 2D pixel space, and LS multiple cuboid matching
in 3D voxel space. The LS3D is bridging the conceptual gap
between the LS image matching and the LS cuboid matching.

This new 3D surface matching technique is a generalization of
the least squares 2D image matching concept and offers high
flexibility for any kind of 3D surface correspondence problem,
as well as monitoring capabilities for the analysis of the quality
of the final results by means of precision and reliability
criterions. Another powerful aspect of this proposed method is
its ability to handle multi-resolution, multi-temporal, multi-
scale and multi-sensor data sets. The technique can be applied
to a great variety of data co-registration problems. In addition
time dependent (temporal) variations of the object surface can
be inspected, tracked and localized using the statistical analysis
tools of the method.
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