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ABSTRACT: 
 
Digital terrestrial panoramic cameras are providing a new device for taking high-resolution images. 
The produced images have been used widely for purely imaging purposes such as an indoor and 
landscape imaging, cultural heritage recording, tourism advertising and image-based rendering. Due 
to the high information content of those images they may also be used as an efficient means for 3D-
object reconstruction. Therefore the need arises to establish a sensor model and investigate the 
potential of the system in terms of accuracy. With a well-defined sensor model we have additional 
powerful sensors for image recording and efficient 3D object modeling.  
In this paper we present the result of physical measurements of tumbling for the SpheroCam. A 
method for tumbling error modeling of panoramic cameras is introduced and we will show how it 
can be used in bundle adjustment with additional parameters. Then we report the result of modeling 
and accuracy testing using a 3D testfield and compare it with the case when tumbling is not being 
modeled for EYESCAN and SpheroCam. The results indicate subpixel accuracy for both systems. 
 
 

1. INTRODUCTION 

The first panoramic cameras used in Photogrammetry were film-based aerial cameras. The Manual 
of Photogrammetry, 1966 lists a number of types, which differ mechanically and optically from 
each other.  A prototype of an aerial panoramic camera can be modeled as a camera with a 
cylindrical focal surface, in which the image is acquired by sweeping a slit across this surface 
(Hartley, 1993). Through the integration of CCD technology, new types of airborne and terrestrial 
digital panoramic cameras were generated, using Linear Array CCDs as imaging devices. The 
EYESCAN jointly developed by German Aerospace Center (DLR) and KST Dresden GmbH and 
the SpheroCam, SpheronVR AG are two different types of line-based panoramic cameras. The 
EYESCAN camera is used in terrestrial photogrammetric applications was addressed in       
Scheibe, et al., 2001. Schneider and Maas, 2003 and Amiri Parian and Gruen, 2003 have worked on 
the mathematical modeling of panoramic cameras. Schneider and Maas investigated a geometrical 
model for a prototype of the EYESCAN panoramic camera and they performed calibration by using 
a 3D testfield and for 3D positioning they used intersection. Amiri Parian, Gruen have worked on a 
mathematical model of general line-based panoramic cameras. They performed calibration and 
accuracy test using a 3D testfield for EYESCAN and SpheroCam.  
 



In this paper, we put emphasis on a mechanical error of a panoramic camera, causing tumbling. 
After a short review of the panoramic cameras, SpheroCam and EYESCAN, the mathematical 
sensor model is introduced. In chapter 4, the mathematical model of tumbling is introduced and 
chapter 5 gives the results of the physical measurement of the tumbling for the SpheroCam, and the 
calibration results of EYESCAN and SpheroCam with/without tumbling parameters. Finally, in this 
chapter we demonstrate the system accuracy for EYESCAN using a testfield.  
 

2. PANORAMA TECHNIQUES 

Several techniques have been used for panoramic imaging. Mosaicking or stitching, mirror 
technology, near 180 degrees (large frame cameras or one shot with fish-eye lens), and scanning 
360 degrees (a new technology) are some known methods for panoramic imaging. Up to now, these 
techniques have been used for pure imaging, such as indoor imaging, landscape and cultural 
heritage recording, tourism advertising and image-based rendering, recently also for efficient 
Internet representations. Among the mentioned techniques for panoramic imaging, the last one has a 
possibility to produce a high-resolution panoramic image (more than 300 Mpixels) in one shot. The 
camera principle consists of a Linear Array, which is mounted on a high precision turntable parallel 
to the rotation axis. By rotation of the turntable, the linear array sensor captures the scenery as a 
continuous set of vertical scan lines. 
 
In our tests we used a prototype of EYESCAN M3, a joint development between German 
Aerospace Center (DLR) and KST Dresden GmbH∗. The camera is engineered for rugged everyday 
field use as well as for the measurement laboratory. The other digital panoramic camera used here is 
the SpheroCam from the SpheronVR AG∗∗, which operates similar to EYESCAN. 
  

2.1.  EYESCAN M3 

Figure 1 shows the sensor system and Table 1 shows resolution parameters of the camera. The 
camera system contains three parts: camera head, optical part, and high precision turntable with a 
DC-gearsystem motor. The camera head is connected to the PC with a bi-directional fiber link for 
data transmission and camera control. The optical part of the system uses high performance 
Rhodenstock lenses. With adjustment rings one can use other lenses. The camera head is mounted 
on a high precision turntable with a sinus-commutated DC-gearsystem motor (Scheibe et al., 2001), 
internal motion control and direct controlling by the PC. Rotation speed and scan angle are pre-
selectable and correspond to the shutter speed, image size and focal length of the lens. For a more 
detailed description see Schneider, Maas, 2003.  
 

2.2. SpheroCam 

The structure of the SpheroCam (Figure 1) includes 3 parts, the camera head, the optical part which 
is compatible with NIKON-lenses, and a DC motor to rotate the Linear Array.  The SpheroCam is 
specially designed for use with a fish-eye lens, with a near 180° vertical field of view. As it rotates 
about its vertical axis, the SpheroCam then captures a complete spherical image. It is designed to 
capture high quality images. Table 1 contains resolution parameters of SpheroCam. For more detail 
on specifications of the camera see Amiri Parian, Gruen, 2003. 

                                                           
∗ http://www.kst-dresden.de/ 
∗∗ http://www.spheron.com/ 



 
Figure 1. Digital terrestrial panoramic cameras. EYESCAN (left) and SpheroCam(right) 

 
Table 1. Parameters of EYESCAN and SpheroCam panoramic cameras 

Resolution EYESCAN SpheroCam 
Number of pixel in linear array  
(vertical resolution) 

3600 or 10200 pixels per line 5300 pixels per line 

Horizontal resolution  
(depends on the focal lens) 

27489 pixels (35 mm lens) 39267 pixels (50 mm lens) 

Pixel size 7 or 8 microns 8 microns 
 

3. SENSOR MODEL 

The sensor model as a mapping function is based on a projective transformation in the form of 
bundle equations, which map the 3D object space information into the 2D image space. The sensor 
model uses the following coordinate systems:  
 

• Pixel coordinate system 
• Linear Array  coordinate system 
• 3D auxiliary coordinate system 
• 3D object coordinate system 

 
Figure 2 shows the pixel coordinate (i, j) system. The original image observations are saved in this 
system. Figure 3 shows the other coordinate systems: Linear Array (0, y, z), auxiliary (X', Y', Z'), 
and object space (X, Y, Z) coordinate systems. The effects of lens distortion and the shift of the 
principal point are modeled in the Linear Array 
coordinate system. The rotation of the Linear 
Array and mechanical errors of the rotating 
turntable are modeled in the auxiliary coordinate 
system. The object space coordinate system is 
used as a reference for determining the exterior 
orientation parameters of the sensor.  
 
To define the auxiliary coordinate system, an 
ideal panoramic camera is considered. Here the 
origin of the auxiliary coordinate system 

 

Figure 2. Pixel coordinate system (i,j) 



coincides with the projection center O. The rotation axis passes through the projection center and 
coincides with Z'. X' passes through the start position of the Linear Array before rotation and Y' is 
defined to get a right-handed coordinate system. 
 

 

Figure 3. Object coordinate (X, Y, Z), auxiliary coordinate (X', Y', Z') and Linear Array (0, y, z) 
coordinate systems 

 
The model, which directly relates pixel observations (i, j) to the object points (X, Y, Z), for an ideal 
sensor becomes (Amiri Parian and Gruen, 2003): 
 

















−
−
−

=
















−

−

0
0
0

)(
0

,,
1

ZZ
YY
XX

MAjRP
c

y kwh
t
z ϕλ  

with 

vANiyP )
2

(
010
001
100

−=















−

−
=  

(1) 

Where 

Ah. . . . . . . . .   Resolution of rotation 
Av . . . . . . . . . Pixel size of the  Linear Array 
c . . . . . . . . .  Camera constant 
N . . . . . . . . . Total number of rows or number of pixels in the Linear Array 
Rz . . . . . . . . . 3D rotation matrix around Z axis 
P . . . . . . . . .  Transfer matrix from the Linear Array to the auxiliary coordinate system 
(0,y,-c) . . . . . Coordinates of image points in the Linear Array coordinate system 
λ  . . . . . . . . . Scale factor  

kwM ,,ϕ  . . . . .  Rotation matrix 
(X0, Y0, Z0)  Location of the origin of the auxiliary coordinate system in the object space 

coordinate system 



There are many systematic errors disturbing the ideal model. The most important ones, with a 
distinct physical meaning are:  

• Lens distortion 
• Shift of principal point 
• Camera constant 
• Resolution of rotation 
• Tilt and inclination of the Linear Array with respect to the rotation axis 
• Eccentricity of the projection center from the origin of auxiliary coordinate system 

 
Above errors were modeled as additional parameters for a prototype of a panoramic camera and the 
results of the modeling for two different cameras were reported in Amiri Parian, Gruen, 2003. 
However, in addition to the mentioned additional parameters, some systematic errors exist in the 
camera system. The most prominent one is tumbling, which shows its effect as a wobbling 
movement of the turntable and moves the origin of the auxiliary coordinate system. Next chapter 
describes the mathematical modeling of the tumbling error. 
 

4. TUMBLING  

Tumbling is mainly caused by an incomplete shape of ball bearings and the contacting surfaces 
(Matthias, 1961). The tumbling results from the mechanical properties of the instrument. Especially, 
it is affected by the rotation around the vertical axis and shows its effect as a change of the exterior 
orientation of the Linear Array during rotation. From that, one of the main effects of the tumbling is 
the moving of the origin of the auxiliary coordinate system during rotation (Figure 4).  

 
Mechanically the physical rotation axis should represent a cylinder. If we suppose that this axis can 
be approximated locally by a mathematical straight line, then the turntable is constraint to have its 
oscillation around one point on the rotation axis and in the plane of the turntable. With this 
assumption we suppose that the turntable is constraint to oscillate around the center of the turntable 
H (Figure 4). Therefore tumbling can be represented as a rotation of the turntable around a 3D 
vector at the time of data acquisition. The mathematical formulation is presented by the concept of 
finite rotational axis (Quaternions or Euler’s parameters).  

 
Figure 4. Effect of tumbling, Moving of the origin of the auxiliary coordinate system 



 
A quaternion is defined as a complex number with one real part and 3 imagery parts: 

kqjqiqqq 4321 +++=  
where 

1222 −==== ijkkji  
(2) 

And it can be used to represent a rotation about the unit 3D vector n̂  by an angle θ  (Arvo 1994, 
Hearn and Baker 1996): 
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The four components of this quaternion are called Euler’s parameters (4) describing a finite rotation 
about an arbitrary axis:  
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Where, zyx nnn ˆ,ˆ,ˆ are components of the unit vector n̂ . 
A rotation matrix representing the tumbling of the turntable can be formulated by converting the 
Euler’s parameters to the rotation matrix: 
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In the case of a panoramic camera, n̂  and θ  are: 
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Where t is the time and j is the number of columns in the pixel coordinate system.  
 
By inserting matrix (5) into the mathematical model of the sensor, the tumbling is modeled. 
In the next chapter we will show, the physical measurement of the tumbling and the result of 
calibration and accuracy test using the tumbling parameters. 
 

5. RESULTS 

5.1. Physical measurement of the tumbling - SpheroCam 

The examination of the tumbling error of SpheroCam was carried out by an inclinometer. In the 
present case, the Zerotronic from Wyler Switzerland is used, which provides the inclination in a 
specific direction. The inclinometer was placed firmly on the top of the turntable near the gravity 
center of the camera system. Then using the operating software of the camera, the inclinations of at 
least 3 continuous rotations (1080°) of the turntable at every 15° were recorded. To see whether the 
camera is stationary with respect to time, the measurements were carried out at 4 different epochs. 
Figure 5 shows the observations for one epoch. A Fourier analysis of the signal was carried out, 
which shows a high peak at the period π (Figure 5). The analysis of the other epochs shows that the 
camera is not stable over time. The instability of the camera causes different amplitudes and periods 
of the observations. Figure 6 shows the observations and the power spectrum of another epoch. 
These experiences indicate that the camera has a periodic oscillation. With that we defined 
functions )( jθ and )(ˆ jn . In the next chapter we report the results of block adjustment with 
additional parameters and tumbling parameters. 



 
Figure 5. Observations for the inclination of the turntable (top) and  

the corresponding power spectrum (bottom) for epoch 1 
 
 

 
Figure 6. Observations for the inclination of the turntable (top) and  

the corresponding power spectrum (bottom) for epoch 2 
 



5.2. Camera calibration considering the tumbling via additional parameters 

Using the experience in the previous chapter we can consider )( jθ  as a sin function with 3 
parameters: amplitude, period and phase. In addition, we can define )(ˆ jn as the direction of the 
inclinometer’s axis, which is in the plane that passes through the optical axis and the Linear Array. 
However, the inclination exists also on the other axes and can be modeled by another sin function 
with different 3 parameters.  
 

5.2.1. SpheroCam 

The camera calibration was performed using a testfield. We established a testfield with 96 circular 
targets at our institute and used it for the calibration of the SpheroCam. The testfield was measured 
with a Theodolite with mean precision of 0.3, 0.3, 0.1 mm for the three coordinate axes. To have a 
comparison of the effect of the tumbling parameters, at first a camera calibration was performed by 
all additional parameters mentioned at chapter 3, without the tumbling parameters. The a posteriori 
variance of unit weight is 1.37 pixels (10.9 microns). Figure 7 shows the image space residuals of 
the observations (the systematic pattern of the residuals is obvious).  
 
In the second step, by adding the 6 parameters of tumbling errors for two perpendicular oscillations 
in the bundle adjustment, self-calibration was performed and the estimated posteriori variance of 
unit weight is 0.59 pixel (4.7 microns). Figure 8 shows the residuals of the observations in the 
image space for this case.  
 
 

 
Figure 7. Image space residuals of the observation (without tumbling parameters) 

 

Figure 8. Image space residuals of the observation (with tumbling parameters) 



5.2.2. EYESCAN  

Since EYESCAN has also a turntable and operates like SpheroCam, it seems that it may have the 
same tumbling behavior. Therefore, we used the same model as was used for SpheroCam, but with 
a sin function with 3 parameters defining amplitude, period, phase. 
 
For camera calibration, we got the image and field observations from Mr. Schneider, TU Dresden. 
TU’s testfield consists of more than 200 control points and the mean precision is 0.2, 0.3, 0.1 mm 
for three coordinate axes. At first the camera calibration was performed with all additional 
parameters as mentioned at chapter 3 without tumbling parameters. The a posteriori computed 
variance of unit weight is 1.30 pixels (10.4 microns). Figure 9 shows image space residuals of the 
observations. A systematic pattern is obvious. In a second step we added 3 sin parameters for the 
tumbling error to the additional parameters. The a posteriori variance of unit weight is now 0.37 
pixel (2.9 microns). Figure 10 shows the image space residuals of the observations, in which the 
systematic pattern of the residuals is enormously reduced. 
 

Figure 9. Image space residuals of the observations (without tumbling parameters) 
 
 

Figure 10. Image space residuals of the observations (with tumbling parameters) 
 
 



5.3. Block adjustment with accuracy test - EYESCAN 

An accuracy test was performed by block triangulation using 5 camera stations and by defining 140 
check and 29 control points. Totally, 12 parameters were used as unknown additional parameters, 
considering tumbling parameters too. Figure 11 shows the object space residuals for checkpoints 
and Table 2 shows the results of adjustment. The estimated standard deviation of the image 
observations is 0.28 pixel, which is better than in the case of a single image.  
For comparison a bundle adjustment was performed with 9 unknown additional parameters without 
tumbling parameters. The result of the adjustment (Table 2 and Figure 12) shows the object space 
residuals for checkpoints.  
 

Figure 11. Object space residuals for check points (with tumbling parameters) 
 
 

Figure 12. Object space residuals for check points (without tumbling parameters) 



Table 2. Results of block adjustment – accuracy test 
 With tumbling 

parameters (Figure 11) 
Without tumbling 
parameters (Figure 12) 

Number of Checkpoints 140 140 
Number of Control Points 29 29 
RMS Checkpoints (X,Y,Z) (mm) 1.16, 0.99, 0.52 3.14, 1.56, 0.85 
STD Checkpoints (X,Y,Z) (mm) 2.39, 0.82, 0.77 4.61, 1.57, 1.48 

0σ̂  (pixel) 0.28 0.54 
 

 
6. CONCLUSION  

We improved the sensor model by the modeling of the tumbling of the camera for two terrestrial 
panoramic cameras EYESCAN and SpheroCam. We measured the tumbling of the SpheroCam 
using an inclinometer. With this experience, we performed self-calibration by using all additional 
parameters (including tumbling parameters) for EYESCAN and SpheroCam. The estimated 
standard deviations for the observations in image space are 0.59 pixel for the SpheroCam and 0.37 
pixel for the EYESCAN. An accuracy test was performed by defining 29 control points and 140 
checkpoints. The achieved accuracy in object space is 1.16, 0.99, 0.52 mm for the three coordinate 
axes.  
In this study we improved the mathematical model by adding 6 sin function parameters to model the 
tumbling error of the SpheroCam and 3 sin function parameters to model the tumbling error of the 
EYESCAN and with that the accuracy improved significantly. However, there are more mechanical 
errors in the instrument, which show its effect as a systematic pattern in the residuals. The modeling 
of these mechanical errors needs more parameter for )( jθ and different definitions for )(ˆ jn . The 
reduction of the tumbling error of panoramic camera by the manufactures will certainly provide 
highly accurate optical measurement system. 
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