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ABSTRACT: 
 
Recent developments of digital cameras in terms of size of Charged Coupled Device (CCD) arrays and reduced costs are leading to 
their applications to traditional as well as new photogrammetric, surveying, and mapping functions. Digital cameras, intended to 
replace the conventional film based mapping cameras, are becoming available along with many smaller format digital cameras 
capable of precise measurement applications. All such cameras require careful assessment to determine their metric characteristics, 
which are essential to carry out photogrammetric activities. These characteristics include estimates of the calibrated focal length, 
location of the principal point relative to the array coordinate system, lens distortion, and the short and long-term stability of these 
quantities. These characteristics are known collectively as the Interior Orientation Parameters (IOP). Current calibration methods are 
based on traditional test fields with numerous distinct targets, which have to be professionally surveyed prior to the calibration 
procedure in order to precisely determine their three-dimensional coordinates. Establishing, surveying, and maintaining traditional 
calibration test fields are very expensive and not easy tasks for non-photogrammetric users of digital cameras. This paper relates to 
the development of a new laboratory calibration procedure that requires an easy-to-establish calibration test field (group of straight 
lines). In addition, the whole calibration process can be automatically carried out with minimal human interaction. It is expected that 
this calibration procedure would provide a good tool for studying the short and long-term stability of off-the-shelf digital cameras. In 
addition, it will give a great push to using those cameras in large scale mapping applications as well as various close range 
photogrammetric activities. 
 
 

1. INTRODUCTION 

Recently, there has been a growing interest in utilizing linear 
features instead of distinct points in various photogrammetric 
operations. Linear features are easier to extract than distinct 
points, especially in a digital environment (Kubik, 1991), and 
they can be extracted with sub-pixel accuracy. Moreover, linear 
features possess more semantic information, when compared to 
distinct points, regarding the object space as they in most of the 
cases represent object boundaries. As far as the camera 
calibration is concerned, it is much easier to establish a test 
field comprised of straight lines rather than establishing a 
traditional test field with numerous ground control points. 
 
Traditional analytical camera calibration through bundle 
adjustment requires a test field with numerous control points 
that have to be precisely surveyed prior to the calibration 
process. Establishing and maintaining such a test field is an 
expensive procedure that has to be conducted by professionals. 
Brown (1971) introduced plumb-line method that uses straight 
lines to derive radial and decentric lens distortions. The 
principle behind this method is that straight line in object space 
should project through a perfect lens as straight-line image. Any 
variations from straightness in the image space are attributed to 
radial and decentric distortions. This method offers a rapid and 
practical procedure for computing lens distortion parameters. 
However, the results would be contaminated by uncorrected 
systematic errors in the comparator and uncompensated film 
deformations. Moreover, we still need to perform a separate 
calibration procedure for determining the camera constant and 
other systematic distortions such as affine deformations. Heuvel 

(1999b) proposed another approach for using straight lines to 
recover the Interior Orientation Parameters (IOP). This method 
can only be applied whenever we have imagery containing 
parallel and perpendicular lines. Similar to the plumb-line 
method, the radial lens distortion is estimated first. Then, the 
principal point coordinates and the focal length are determined 
later. 
 
Prior to incorporating straight lines in the bundle adjustment 
procedure, a decision should be made regarding how they 
would be represented in image and object space. Within most of 
the existing literature such as the work of Mulawa and Mikhail 
(1988), Tommaselli and Lugnani (1988), Ayache and Faugeras 
(1989), Tommaselli and Tozzi (1992), Habib (1998), Heuvel 
(1999a) and Tommaselli and Poz (1999), a straight line in the 
object space is defined as an infinite line using minimal 
representation with four degrees of freedom. Habib (1999) 
proposed an alternative approach for representing object space 
straight lines using two points (six-dimensional representation). 
Uniqueness and singularities are the primary reasons for 
choosing this representation. Since minimal representations of 
object space line as an infinite one have singularities, they 
would not represent all three-dimensional lines in object space. 
In addition, such a representation would require complicated 
algorithms for perspective transformation between object and 
image space, which would make it difficult to incorporate in 
existing bundle adjustment programs. In this research, we use 
two points to represent the straight lines in object space, as 
suggested by Habib (1999). Thus, the object space line 
segments would be well localized. On the other hand, image 
space lines will be represented as a sequence of 2-D points. 



 

This representation would allow us to incorporate various 
distortions at each point along the line. 
 
This paper introduces a new approach for simultaneous 
estimation of the IOP of cameras. This method can utilize 
straight lines as well as distinct points in the bundle adjustment 
with self-calibration. Section 2 summarizes commonly used 
distortion models and traditional analytical camera calibration 
procedure. The suggested mathematical model for incorporating 
straight lines in bundle adjustment with self-calibration is 
described in section 3. Then, we present experimental results 
obtained from the suggested approach using real data. Finally, 
conclusions and recommendations for future work are 
summarized in section 5. 
 
 

2. SELF-CALIBRATION: BACKGROUND 

The main objective of photogrammetry is to inverse the process 
of photography. When the film or CCD array inside the camera 
is exposed to light, light rays from the object space pass through 
the camera perspective centre (the lens) until they hit the focal 
plane (film or CCD array) producing images of the 
photographed objects. Light rays from the object points to the 
corresponding image points passing through the lens are 
assumed to be straight. This assumption is known in the 
photogrammetric literature as the collinearity model (Kraus, 
1993). 
 
During camera calibration, we determine the IOP, which 
comprise the coordinates of the principal point, the principal 
distance, and image coordinate corrections that compensate for 
various deviations from the collinearity model. There are four 
principal sources of departure from collinearity, which are 
“physical” in nature (Fraser, 1997). These are the radial lens 
distortion, decentric lens distortion, image plane unflatness, and 
in plane image distortion. The net image displacement at any 
point is the cumulative influence of these perturbations. The 
relative magnitude of each one of these perturbations depends 
very much on the quality of the camera being employed. 
 
2.1 Distortion models 

Radial lens distortion is usually represented by polynomial 
series (Equation 1). The term K1 alone will usually suffice in 
medium accuracy applications. The inclusion of K2 and K3 
terms might be required for higher accuracy and wide-angle 
lenses. The decision as to whether to incorporate one, two or 
three radial distortion terms can be based on statistical tests of 
significance.    
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and K1, K2 and K3 are the radial lens distortion parameters. 
 

A lack of centring of the lens elements along the optical axis 
gives rise to the second category of lens distortion, namely, 
decentric distortion. The misalignment of the lens components 
cause both radial and tangential distortions which can be 
modelled by correction equations according to (Brown, 1966) 
as follows: 
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where P1 and P2 are the decentric lens distortion parameters. 
 

Systematic image coordinate errors due to focal plane 
unflatness can limit the accuracy of photogrammetric 
triangulation. Radial image displacement induced by focal plane 
unflatness depends on the incidence angle of the imaging ray. 
Narrow angle lenses of long focal length are much less 
influenced by out-of-plane image deformation than short focal 
length and wide-angle lenses. To compensate for focal plane 
unflatness, the focal plane needs to be topographically 
measured. Then, a third- or fourth-order polynomial can model 
the resulting image coordinate perturbations. In this work, the 
effect of focal plane unflatness is assumed to be very small and 
will be ignored. 

 
In-plane distortions are usually manifested in differential 
scaling between x and y image coordinates. In addition, in-plane 
distortions might introduce image axes non-orthogonality. 
Those distortions are usually denoted affine deformations and 
can be mathematically described by Equation 3. One should 
note that affine deformation parameters, which are correlated 
with other IOP and EOP are eliminated (for example, shifts are 
eliminated since they are correlated with the principal point 
coordinates). 
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where A1 and A2 are the affine distortion parameters. 
 

2.2 Traditional approach of camera calibration 

In traditional camera calibration, convergent imagery is 
acquired over a test field. Together with tie points, a large 
number of control points are measured in both image and object 
space. The extended collinearity equations (Equations 4 and 5) 
are used in bundle adjustment with self-calibration to solve for: 

• Ground coordinates of tie points. 
• EOP of the involved imagery. 
• IOP of the involved camera(s). 
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where:  

etcADDLDRLD xxxxx ∆+∆+∆+∆=∆ ,    

etcADDLDRLD yyyyy ∆+∆+∆+∆=∆ , 

(xa, ya) are the observed image coordinates of image 
point a, 

(XA, YA, ZA) are the ground coordinates of object point A, 
(xp, yp)  are the image coordinates of the principal point, 
c  is the camera constant (principal distance),  
(X0, Y0, Z0) are the ground coordinates of the perspective 

centre, and 
(r11, …, r33) are the elements of the rotation matrix  that 

depend on the rotation angles (ω, ϕ, κ). 
 



 

 
3. SUGGESTED APPROACH 

3.1 Mathematical Model 

Before discussing the mathematical model, it should be noted 
that we want to incorporate overlapping images with straight 
linear features, some tie and control points in a self-calibration 
process to estimate the following parameters: 
 

• The EOP of the involved imagery and the IOP of the 
involved cameras. 

• The ground coordinates of tie points and the 
parameters defining the straight lines in the object 
space. 

 
As shown in Figure 1, for a frame camera, a straight line in the 
object space will be a straight line in the image space in the 
absence of distortions. Deviation from straightness in the image 
space is a function of the distortion parameters. As mentioned 
before, including straight lines in the bundle adjustment 
procedure would require the answer to two main questions. 
First, what is the most convenient model for representing 
straight lines in the object and image space? Second, how can 
we establish the perspective relationship between image and 
object space lines? In this research, two points along the line 
represent object space line. Those points are monoscopically 
measured in one or two images within which this line appears. 
The relationship between those points and the corresponding 
object space points is modelled by the collinearity equations 
(Equations 4 and 5). In the image space, the lines will be 
defined by a sequence of intermediate points along the line. 
Once again, those points are monoscopically measured (there is 
no need to identify conjugate points in overlapping images). 
This representation is useful since it allows us to individually 
model and include the distortions at each of these points. The 
perspective relationship between image and object space lines is 
incorporated in a mathematical constraint. The underlying 
principle in this constraint is that the vector from the 
perspective centre to any intermediate image point along the 
line lies on the plane defined by the perspective centre of that 
image and the two points defining the straight line in the object 
space. In other words, the three vectors (Figures 1 and 2): 
 

• v1 (the vector connecting the perspective centre to the 
first point along the object space line). 

• v2 (the vector connecting the perspective centre to the 
second point along the object space line). 

• v3 (the vector connecting the perspective centre to any 
intermediate point along the image line) are coplanar 
(Equation 6). 
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Equation 6 incorporates the image coordinates of the 
intermediate point, EOP, IOP (which includes the distortion 
parameters) as well as the ground coordinates of the points 
defining the object space line. The constraint in Equation 6 can 
be written for each intermediate point along the line in the 
imagery. One should note that this constraint would not 
introduce any new parameters. The number of constraints is 
equal to the number of measured intermediate points along the 
image line. 

 
 

 
 

 
 
 
 
 
 
 
 

 

 

    Figure 1. 3-D straight lines in frame camera imagery. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Mathematical model for including straight lines in 

frame camera imagery. 
 
 
In summary, for bundle adjustment with self-calibration using 
straight lines, the end points (points 1 and 2 in the above 
example) can be selected in any of the images where the straight 
line appears. These points need not be identifiable or even 
visible in other images. Four collinearity equations will be 
written using the measured end points for each line. The 
intermediate points (point 3 in the above example) can be 
measured in any one of the overlapping images. Those 
intermediate points need not be conjugate. A constraint is 
written for each intermediate point according to Equation 6. A 
schematic drawing to clarify the different scenarios for the end 
point selection is shown in Figure 3. Figure 3-a shows a case 
where the end points of the straight line are selected in one 
image (image 1); while in Figure 3-b, they are selected in 
different images (images 1 and 4). Intermediate points are 
shown in the same figure. 

 
The same approach can be extended to include higher-order 
primitives (for example, conic sections). In addition, it is 
applicable for line cameras as well. The only difference is that 
the platform motion perturbations during the scene capture as 
well as the above mentioned distortion sources cause deviation 
from straightness in the imagery. 
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Figure 3. Schematic drawing representing two scenarios for the 
selection of the end and intermediate points in 
overlapping images. 

 
3.2 Optimal configuration 

Two types of configurations of straight lines, box-type (Figure 
4) and X-type (Figure 5), are used to test the effects of previous 
distortion models. The optimum configuration is the one that 
will cause more deviations from straightness in the image space. 
Figures 4 and 5 illustrate the effects of various distortion 
sources for both configurations. 

 
 
 
 
 
 
 

 
               (a)                            (b)                            (c) 
Figure 4. Distortions in box-type configuration: radial distortion 

(a), decentric distortion (b), and Affine deformation 
(c). 

 
          
 
 
 
 
 
 
 
               (a)                            (b)                            (c) 
Figure 5. Distortions in X-type configuration: radial distortion 

(a), decentric distortion (b), and Affine deformation 
(c). 

 
By analysing Figures 4 and 5, one can see that the box-type 
configuration is more useful since it causes larger deviation 
from straightness (compare Figure 4-a and 5-a). Therefore, to 
successfully recover the radial distortion parameters (the most 
significant distortion component), we need a test field 
composed of a grid of straight lines along the rows and columns 
of the captured calibration images. We also need some point 
targets to derive the camera constant (principal distance). These 
targets need not be surveyed with a theodolite or total station. 
Only distances between those targets should be measured. An 
example of such a test field can be seen in Figure 6.  
 
 

4. EXPERIMENTAL RESULTS 

Conducted experiments using real data are primarily focused on 
achieving the following objectives: 
• Determine the required distortion parameters to 

sufficiently describe the IOP of the involved camera. 
• Compare the performance of the suggested approach to the 

traditional approach using distinct ground control points. 
• Inspect the accuracy of the reconstructed object space 

using the derived IOP. 
 
In those experiments, we used a SONY DSC-F707 digital 
camera, with a maximum resolution of 2560 x 1920 pixels.  A 
total of forty-eight images have been acquired in four different 
sessions (A-D). Using a shutter speed of 125, images used for 
experiment A and B were acquired with an f/number of 3.5. 
Then, an f/number of 11 is applied for experiments C and D. 
Each session consists of twelve exposures at six different 
locations with 90o rotation around the Z-axis at each exposure 
station. The camera was switched off/on after each session. We 
built a test field based on the optimal configuration discussed 
before, Figure 6. The test field is composed of nine straight 
lines (black robes on a white background). Also, distances 
between five targets (highlighted by black circles) have been 
measured (±2.0mm). We developed an automated procedure for 
measuring intermediate point coordinates along the lines in the 
involved imagery. 
 

 
Figure 6. New test field 

 
The test field has been augmented to allow for traditional point 
based camera calibration. A total of 30 signalised targets are 
precisely surveyed using a total station (±0.5mm), Figure 7-a. In 
the bundle adjustment with self-calibration, we can consider the 
following deformation/distortion parameters: 
• Radial distortion parameters K1, K2. 
• Decentric distortion parameters P1, P2. 
• Affine deformation parameters A1, A2. 
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We carried out several experiments, using both point-based and 
line-based self-calibration, to investigate the most appropriate 
model that sufficiently describes the internal characteristics of 
the camera. Considering K1, K2, P1, P2, A1, A2 resulted in high 
correlations between parameters. In general, the following 
could be observed: 
• There is high correlation between K1 and K2. 
• There is high correlation between xp and P1. 
• There is high correlation between yp and P2. 
• There is high correlation between the IOP and EOP when 

using point-based self-calibration. This correlation is not 
observed when using line-based self-calibration. 

• The estimated A1 and A2 are not significantly different from 
zero. This indicates that there are no affine deformations 
associated with the involved camera. 

 
Moreover, using four parameters (xp, yp, c, K1) resulted in a 
variance component (σ0

2) that is not significantly different from 
the variance component obtained by considering nine IOP (xp, 
yp, c, K1, K2, P1, P2, A1, A2). Therefore, we concluded that 
considering xp, yp, c, K1 sufficiently models the IOP of the 
involved camera.  
 
Derived estimates of IOP using the traditional point-based and 
the developed line-based self-calibration procedures are shown 
in Table 1. Through visual inspection, results from both 
approaches are quite comparable. Also, by comparing results 
from Experiments A through D, we observe that the IOP of the 
involved camera has no significant variation between 
experiments. This indicates that the internal characteristics of 
the camera are stable over short time periods.  
 

Table 1. Estimates of IOP and distortion parameter 
Experiment A Point Line 

σ0 0.0018 0.0020 
xp [mm] -0.1223 (±0.0046) -0.1169 (±0.0016) 
yp [mm] -0.0756 (0.0048)  -0.0648 (±0.0016)  
c [mm] 11.6042 (±0.0124)  11.6094 (±0.0048)  

K1 -1.110829e-03 -1.176255e-03 
Experiment B Point Line 

σ0 0.0018 0.0020 
xp [mm] -0.1285 (±0.0042)  -0.1216 (±0.0016) 
yp [mm] -0.0812 (±0.0043)  -0.0718 (±0.0015) 
c [mm] 11.6101 (±0.0103)  11.6189 (±0.0044) 

K1 -1.10495e-03 -1.185481e-03 
Experiment C Point Line 

σ0 0.0017 0.0019 
xp [mm] -0.1247 (±0.0040) -0.1224  (±0.0016) 
yp [mm] -0.0707 (±0.0042)  -0.0642 (±0.0015) 
c [mm] 11.6041 (±0.0118)  11.6034 (±0.0048) 

K1 -1.118769e-03 -1.174221e-03 
Experiment D Point Line 

σ0 0.0018 0.0021 
xp [mm] -0.1212 (±0.0044) -0.1171 (±0.0016) 
yp [mm] -0.0759 (±0.0044) -0.0711 (±0.0016) 
c [mm] 11.6090 (±0.0114) 11.6016 (±0.0047) 

K1 -1.121013e-03 -1.177155e-03 
 
Intersections of conjugate light rays have been used to compare 
the IOP derived from the point-based and line-based calibration 
techniques (to see if there were significant differences between 
the estimated IOP). In those experiments, we used the following 
to compute object coordinates: 

• IOP from point-based and line-based approaches to self-
calibration. 

• Image coordinate measurements of the signalised targets. 
• One set of EOP 
 
Reconstructed object spaces using the different IOP are 
compared through root mean square error analysis (Table 2). 
From the RMSE results in Table 2, one can see that the IOP 
from the point and line-based calibration procedures are 
stochastically identical. 
 

Table 2. Intersection results (30 points) 
RMSE Exp. A Exp. B Exp. C Exp. D 

RMSX [m] 0.00030 0.00036 0.00047 0.00073 
RMSY [m] 0.00035 0.00025 0.00047 0.00065 
RMSZ [m] 0.00094 0.00078 0.00040 0.00073 

 
In order to evaluate the quality of the derived IOP, the images 
have been re-sampled after removing various distortions (Figure 
7-b). One can see that the straightness property has been 
correctly restored. A quantitative measure is developed using 
regression analysis applied to the measured intermediate points 
along the straight lines before and after calibration (namely, the 
variance component resulting from straight line fitting through 
the intermediate points). These results can be seen in Figure 7-
b. The computed variance components after calibration are 
significantly improved after the calibration process.  
 

 
(a) 

 

 
(b) 

Figure 7. Original images before (a) and resampled images after 
(b) calibration. A dashed straight line has been 
added to show the deviation from straightness before 
calibration (a) and its recovery after calibration (b). 



 

5. CONCLUSIONS AND REMARKS 

In this research, straight line constraints are incorporated in 
bundle adjustment with self-calibration. Experiment results 
proved the feasibility of the suggested approach. The IOP 
derived from the suggested approach are stochastically identical 
to the derived IOP from the traditional point-based calibration 
procedure. It has been established that one radial distortion 
coefficient (K1) is enough to model the distortions in the 
involved camera. The suggested approach has the following 
advantages: 
• Compared to traditional point-based calibration test filed, 

the required test field is much easier to establish. 
• Automation of the intermediate point measurements along 

the linear features improves the efficiency of the suggested 
approach. 

• Non-photogrammetric users of off-the-shelf digital 
cameras can carry out the calibration procedure. This is 
important since it will allow such users to generate high 
quality photogrammetric products from digital cameras. 

• For unstable digital cameras, the calibration procedure can 
be carried out every time the camera is switched on. 

• The approach offers an effective tool to study the short- 
term and long-term stability of off-the-shelf digital camera 
and the most appropriate model that sufficiently describes 
various deformations taking place during the imaging 
process. 

 
Future work will focus on more elaborate testing of the short 
and long-term stability of off-the-shelf digital cameras. We will 
investigate other distortion models to see if they can describe 
digital cameras more successfully. Finally, we will build a 
complete system that allows the user to perform three-
dimensional measurements of the objects of interest (e.g. if 
those objects can be incorporated in the calibration test field, 
then the calibration and measurements can be done 
simultaneously).  
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