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ABSTRACT 
 
The ability of hyperspectral image (HSI) data to provide estimates of soil electrical conductivity (ECa) and soil 
fertility levels without requiring extensive field data collection was investigated. The relationships between HSI 
spectral reflectance signatures and soil properties were analyzed to evaluate the usefulness of HSI for quantifying 
within -field spatial variability. Bare soil images were acquired using a prism grating pushbroom scanner in April 
2000 and May 2001 for a central Missouri experimental field in a minimum-tillage corn-soybean rotation. Data were 
converted to reflectance using chemically-treated reference tarps with eight known reflectance levels. Geometric 
distortions of the pushbroom sensor images were corrected with a rubber sheeting transformation. A 5 m pixel size 
was selected by analysis of short-range variations in five sub-field areas. Statistical analyses, including simple 
correlation, multiple regression (MR), and principal component analysis (PCA) were used to relate HSI data and 
derived Landsat-like bands to field-measured soil properties. The blue wavelengths of the HSI and Landsat-like 
images showed the highest correlation with ECa  and soil chemical properties. With the exception of pH and P, the 
soil fertility data were negatively correlated to the HSI reflectance data. The highest correlations to the HSI bands 
were found for Mg and CEC. Stepwise multiple linear regression (SMLR) mo dels using the full HSI dataset 
included too many variables, which increased the danger of overfitting. MR models using Landsat-like bands may 
be more practical than using SMLR models for mapping soil properties. Analysis of principal components showed 
that PC 2 and PC 4 explained soil variability well for CEC, Mg, OM, K, and pH. Both approaches to data volume 
reduction, creating Landsat-like bands and PCA, showed potential for developing relationships with soil properties. 
HSI analysis appears promising for quantifying soil property variability. 
 
 

INTRODUCTION 
 

Precision agriculture, or site-specific crop management (SSCM), is an information-based management-
intensive approach to farming. Instead of managing a field as a whole, the philosophy of precision agriculture is to 
manage individual areas within a field. Accounting for soil variability is a critical need for SSCM. Traditionally, 
quantification and mapping of soil properties have been done through relatively coarse grid soil sampling and 
statistical interpolation.  

Soil electrical conductivity (ECa) measurements collected by ground-based sensors have been used to describe 
within -field variability in soil physical and chemical properties (Sudduth et al., 2002), and have also been correlated 
with crop yield variations (Kitchen et al., 1999). In traditional precision agriculture applications, soil fertility 
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variability has been characterized by grid soil sampling and laboratory analysis.  These procedures are costly, time-
consuming, and provide relatively low resolution data. Methods that could estimate these soil properties more 
efficiently would be useful. Widespread implementation of precision agriculture will require methods for more 
efficiently and economically characterizing variations in soil properties and other factors that affect crop yields.  

Image-based remote sensing (RS) is an efficient way to detect spatial differences in crop and soil conditions 
within a field. The recent convergence of technological advances in geographic information systems  (GIS), global 
positioning systems (GPS), and automatic control of farm machinery through variable rate technology (VRT) have 
provided an ideal framework for utilizing RS for farm management (Moran, 2000). Remote sensing data are also 
useful in helping to define management units. Remote sensing offers the potential for identifying fine scale spatial 
patterns in soil properties across a field, and optimizing soil sampling strategies to quantify those patterns (Mulla et 
al., 2000). 

Recently, a variety of airc raft and satellite based RS data such as photographs, videographs, hyperspectral and 
multispectral images have become available for use in agricultural applications. Imaging spectrometry (also known 
as hyperspectral sensing), is defined as the simultaneous acquisition of images in many relatively narrow, contiguous 
and/or non-contiguous spectral bands throughout the ultraviolet, visible and infrared portions of the spectrum 
(Jensen, 2000). The value of an imaging spectrometer lies in its ability to provide a high-resolution reflectance 
spectrum for each picture element in the image. The reflectance spectrum in the region from 400-2500 nm may be 
used to identify a large range of surface cover materials that cannot be identified with broadband, low-spectral-
resolution imaging systems such as the Landsat MSS, TM, or SPOT (Goetz et al., 1985). 

Airborne pushbroom scanning provides an effective method for hyperspectral imaging (HSI) with a low cost 
digital CCD camera (Mao, 2000). However, the data obtained with an aerial pushbroom HSI system suffers from 
geometric distortions. Some of the distortions are caused by aircraft attitude changes during image scanning. When 
the aircraft attitude changes, the scanner is presented with an off-nadir scene, causing distortion. This problem is 
especially severe in the in-track direction due to roll of the aircraft. These distortions must be corrected before the 
image data can be geo-referenced and used for field pattern identification (Yao et al., 2001). 

The objective of this study was to explore the relationships between airborne HSI spectral reflectance 
signatures and soil properties, and to evaluate the usefulness of HSI for quantifying within-field spatial variability. 
In particular, we were interested in the ability of HSI data to provide estimates of soil ECa and soil fertility levels 
without requiring extensive field data collection. 

 
 

GROUND DATA COLLECTION AND PROCESSING 
 

Data were collected on a research field (Field 1, 35 ha) located near Centralia, Missouri (92.12 E – 39.97 N). 
Field 1 is in a corn-soybean rotation, and data were obtained for one soybean (2000) and one corn (2001) crop year. 
The soils found at these sites are claypan soils of the Mexico-Putnam association (fine, smectitic, mesic aeric Vertic 
Aqualfs). Mexico-Putnam soils formed in moderately-fine textured loess over a fine textured pedisediment. Surface 
textures range from a silt loam to a silty clay loam. The subsoil claypan horizon(s) are silty clay loam, silty clay or 
clay, and commonly contain as much as 50 to 60% montmorillonitic clay. Within the study field, topsoil depth 
above the claypan ranged from less than 10 cm to greater than 100 cm. Because of the high-clay subsurface 
horizons, topsoil depth above the claypan is often correlated to spatial variations in crop productivity (Kitchen et al., 
1999). 

Ground measurements used in this analysis included soil ECa and soil chemical properties. Soil ECa was 
measured for each field in the fall of 1999 using two commercial sensor systems, the Geonics EM38 and the Veris 
3100. The EM38 operates on the principle of electromagnetic induction and, as operated in the vertical dipole mode, 
provides an effective measurement depth of approximately 1.5 m. The EM38 was used in a GPS-enabled mobile 
system described by Sudduth et al. (2001) to collect data every 1 second on measurement transects spaced 10 m 
apart. The Veris 3100 is a complete commercial system that measures ECa through coulter electrodes that penetrate 
the ground surface. This device provides both a shallow and deep reading, with effective measurement depths of 
approximately 0.3 m and 1.0 m. Data was collected every 1 s on a 10 m transect spacing. At the operating speeds 
used, this time interval corresponded to 4 to 6 m spacing between sample points. Soil  ECa  data were analyzed using 
geostatistics, and interpolated by block kriging to a 5 m cell size using appropriate semivariogram models. In 
previous research, we have found these two sensors to provide similar, but not identical mapped ECa information on 
claypan-soil fields (Sudduth et al., 1998). Both the EM38 and Veris deep readings have been shown to be reliable 
estimators of topsoil depth in claypan soils (Sudduth et al., 1998; Kitchen et al., 1999; Sudduth et al., 2001).  
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The field was sampled on a 33 m grid to a 15 cm depth in the spring of 2001 and analyzed for P (Bray 1 
extractable), K, Ca, Mg (ammonium acetate extractable), CEC (sum of bases), organic matter (OM; wet oxidation), 
and salt pH, all using standard University of Missouri procedures (Bro wn and Rodriguez, 1983). Soil sampling point 
coordinates were later used to extract coincident spectral signatures obtained from the HSI data.  

 
 

HYPERSPECTRAL IMAGE PROCESSING AND DATA ANALYSIS 
 

Airborne images of bare soil were taken in April 2000 and May 2001. The aerial HSI system used in this study 
was a pushbroom prism-grating scanner (RDACSH3; Real Time Digital Airborne Camera System H3) operated by 
Spectral Visions Midwest (Mao, 2000). Images included 120 bands ranging from 471-828 nm (3 nm interval) with a 
spatial resolution of 1 m and 1.5 nm Full Width at Half Maximum (FWHM). Pushbroom scanning is a widely used 
method for airborne HSI in which an airborne imaging sensor acquires one image line at a time while the aircraft 
provides a mobile platform to carry the sensor across the target area.  

Geometric distortion was observed in the images, probably due to aircraft attitude change during image 
acquisition. In general, such geometric distortion should be corrected by the acquisition system since flight 
information can be used to correct image distortion. We applied a rubber sheeting model using piecewise 
polynomials for image rectification rather than a linear polynomial transformation. Foghani (2000) reported that a 
more precise image could be obtained by using a rubber sheeting procedure, compared to polynomial adjustment or 
an orthophotography algorithm. The Field 1 boundary had been very accurately surveyed, and that vector data was 
used along with a resolution-merged IKONOS image with a spatial resolution of 1 m taken on August 4, 2000. The 
IKONOS image was registered and matched with the field boundary and used as a reference image for 
georeferencing airborne imagery. Rubber sheeting models are not recommended for rectification of areas outside of 
the field of interest because of geometric uncertainty, and should be used only when the geometric distortion is 
severe, ground control points are abundant, and no other geometric model is applicable (ERDAS, 1997).  

For radiometric calibration, chemically-treated reference tarps with eight known reflectance levels from 2% to 
88%, (a range wide enough to represent all field surface reflection conditions) were used. The tarps were placed 
adjacent to Field 1 during flights and reflectance values were retrieved from the images by regression models of 
reflectance against the 120 spectral bands. 

While the HSI data had a spatial resolution of 1 m, this level of resolution was not necessarily desirable if the 
image contained significant random noise. The amount of random noise throughout the wavelengths was determined 
by checking spatial profiles of the images, since soil properties are continuous phenomena in nature. Five 
representative areas in Field 1 were used to determine the optimum pixel size for data analysis. Subset images were 
re-sampled at various levels of image aggregation ranging from a 1 m to a 10 m pixel size. Standard deviations of 
each subset area revealed that most short-range variations were removed at a 5 m spatial resolution. Image 
degradation was applied to provide 5 m images for further data analysis. 

Principal component analysis (PCA) was completed on each image and used as a data set for further statistical 
analysis. PCA is a procedure for transforming a set of correlated variables into a new set of uncorrelated variables, 
termed principal components (PCs). This transformation is a rotation of the original axes to new orientations that are 
orthogonal to each other, thus there are no correlations among the transformed variables. Another property of PCA 
is that the majority of the information contained in a large set of highly correlated variables (wavelengths, in this 
case) can be represented with a much smaller number of PCs. The first five PCs of each image were used for data 
analysis. Using the GPS coordinates for soil ECa and soil chemical properties, pixel values of coincident points on 
the imagery were extracted, and PCs calculated. 

In addition to PCA, standard correlation, multiple regression (MR), and stepwise multiple linear regression 
(SMLR) analyses were carried out to determine the relationships between HSI image signatures and ground-
collected soil data. Soil ECa and soil chemical property data were regressed against HSI data, 4 Landsat-like bands, 
and the 5 PCs of the Field 1 images taken in both years. Soil ECa and fertility maps derived from regression models 
and PCs were compared with ground sensed data. 

 
 

SOIL PROPERTIES AND HYPERSPECTRAL SIGNATURES 
 

Soil reflectance is a function of the soil’s chemical and physical composition (Bowers and Hanks, 1965). 
Optical properties of soils are related first to their mineral composition, since soils result from the transformation of 
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weathering products of rocks. A soil reflectance is generally low but increases monotonically with wavelength 
through the visible and near-infrared regions of the electromagnetic spectrum (Obukhov and Orlov, 1964; Orlov, 
1966). Soil color is a useful indicator of soil type and soil properties (Karmanov and Rozhkov, 1972). The spectral 
reflectance of soil is also influenced by moisture content, organic matter, particle size, iron oxide, mineral 
composition, soluble salts, parent materials, and other factors (Baumgardner et al., 1985; Sudduth and Hummel, 
1991). 

Since hyperspectral data are often highly redundant, data compression or reduction is an important pre -
processing step. To compare the relative usefulness of the HSI data, we averaged reflectance values of the HSI data 
spectrally to make Landsat-like bands. Two data sets, the first consisting of the 120 HSI data layers and the second 
consisting of 4 Landsat-like data layers, were used for statistical analysis in this study. 

When the two bare soil images taken in 2000 and 2001 were visually compared, the 2001 image was generally 
darker than the 2000 image (Figure 1). The 2001 image showed much more contrast in the poorly drained areas of 
the field (i.e., the water drainage channel) and between the foot slope and side slope areas of the northern part of the 
field. Climatological conditions may help to explain these observations.  In 2000, only 4 mm of precipitation was 
observed during the 2 weeks prior to image acquisition. In 2001, a total of 60 mm was recorded in the 2 weeks prior 
to the flight. Since flow accumulation, redistribution, and infiltration would have been expected to differ 
considerably across landscape positions within this field, surface soil moisture variations would have been 
significantly larger in 2001 than in 2000.  

Figure 2 more clearly illustrates this point. Soil lines for both bare soil images on Field 1 were plotted into red- 
NIR space. For a given soil, the red (rg) and near-infrared (nirg) reflectances are related by the equation of the soil 
line: nirg = a·rg + b (Baret and Guyot, 1991). The parameters a and b vary slightly among soils (Huete et al., 1984). 
Spectral reflectance of the wet (2001) soil was lower than that of the dry (2000) soil, narrower in terms of data 
range, and had a greater deviation from the trend line. Meanwhile dry soil had wider data range and a smaller 
deviation fro m the trend line. This tighter fit might allow for a better relationship between spectral signature and soil 
properties.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

April 2000 May 2001April 2000April 2000 May 2001May 2001

 
                                          a)                                                                                       b) 
Figure 1. Two bare soil images of Field 1 taken in April 2000 (a) and May 2001 (b) for this study. 



ESTIMATING WITHIN-FIELD VARIATIONS IN SOIL PROPERTIES FROM AIRBORNE 
HYPERSPECTRAL IMAGES 

Pecora 15/Land Satellite Information IV/ISPRS Commission I/FIEOS 2002 Conference Proceedings 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Simple Correlation 

To investigate the specific relationships present in this data, simple correlation analysis was completed and 
correlation coefficients (r) were plotted against wavelength (Figures 3 and 4) to investigate the effective wavelength 
range for quantifying soil ECa and chemical properties (pH, organic matter, P, Ca, Mg, K, and CEC). Soil ECa had a 
strong negative correlation with all 120 HSI bands and 4 Landsat-like bands in the dry soil conditions of 2000 
(Figure 3). The blue wavelengths showed the highest correlation with ECa, with the correlation decreasing rapidly as 
the wavelength increased to around 560 nm. In the green and red wavelengths, correlation coefficients for ECa were 
essentially constant. Of the ECa data types, the EM38 reading was most highly correlated with the image data, while 
the Veris 3100 shallow (0-0.3 m) data showed the lowest correlations. A region of extremely noisy data was found in 
each correlation coefficient plot at around 740-750 nm (Figure 3). This is the location of an O2 and H2O absorption 
band, where radiant energy is absorbed by these atmospheric constituents (Jensen, 2000). Correlation patterns in the 
NIR wavelengths showed some fluctuation, especially in the wet (2001) soil condition.  

Soil chemical properties were related to blue, green, and red wavelengths in the visible region more strongly 
than they were to the near infrared wavelengths (Figure 4). This implied that the spectral reflectance signatures 
related to soil chemical properties were determined by soil color and thus, the factors influencing soil color also 
influenced soil chemical property variability. The patterns of the correlations for all cations show the same trends for 
both years. With the exception of pH and P, the soil fertility data were negatively correlated to the HSI reflectance 
data. Over the range of wavelengths the highes t correlations to the HSI bands were found for Mg and CEC. For all 
soil properties, the highest correlations were generally found between 470 and 520 nm, in the blue bands of the 
visible region. Correlation with P was the most dissimilar between years. We feel this difference could be attributed 
to the fact that available P is an anion and will be independent of CEC/texture trends. Further, P is a managed soil 
property which varies over the field with uneven P fertilization. When correlation coefficients of Landsat-like bands 
were compared with those of the HSI bands, the results were quite similar (Figures 3 and 4). However, for the blue 
wavelengths only, the HSI bands seemed slightly more informative than the blue band of the Landsat-like image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Soil lines, in red-NIR 
space, for Field 1 claypan soils, 
ranging from silt loam to silty clay 
loam. 
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Figure 3. Correlations of 120 wavelengths and Landsat-like bands (LBs) to EM38 and Veris ECa readings 
                in 2000 (top) and 2001 (bottom). 
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Figure 4. Correlations of 120 wavelengths and Landsat-like bands (LBs) to soil fertility by grid sampling 
                in 2000 (top) and 2001(bottom). 
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 Multiple Regression 
SMLR analysis was applied for estimating soil ECa and soil chemical properties from HSI bands for both years. 

Model development continued until at least one parameter estimate was insignificant at the 0.15 level. The model 
results are shown in Table 1. The EM38 ECa data was best approximated using the HSI data.  These data provided 
the most significant models both in 2000 (R2 = 0.56) and 2001(R2 = 0.43). In terms of soil fertility, pH, Mg, and 
CEC were modeled from the HSI data with the highest R2 values of 0.68, 0.67, and 0.66, respectively. The SMLR 
procedure allowed many HSI bands to be included. Therefore, in addition to this "full" model, a conservative SMLR 
model, with R2 ≈ 95% of the full model R2 was determined (Table 1). The intention of this model was to reduce the 
chance of overfitting the data, as compared to the full model. A similar approach worked well in a previous spectral 
data analysis (Sudduth and Hummel, 1991). On average, this reduced the number of wavelengths selected by over 
50%, suggesting that little information was contained in those additional data (Table 1). Compared to soil ECa  
models, the full models for soil fertility properties included fewer wavelengths and the reduction in number of 
wavelengths from the full to the conservative model was less (Table 1). This may have been due to the much smaller 
number of observations available for the soil fertility data (n=335) as compared to the ECa data (n=9588). 

Multiple regression (MR) of the 4 Landsat-like bands were performed for soil ECa and soil fertility (Table 1). 
The R2 values of these MR models were always lower than those of the conservative SMLR models using 120 HSI 
bands for estimating soil properties. But SMLR models with a large number of independent variables included may 
be prone to overfit and provide poor predictions on a different data set. Therefore, MR models using Landsat-like 
bands may be more useful for mapping soil properties in practice.  
Three ECa maps derived from the 2000 image using these MR models are shown in Figure 5. Soil ECa can be 
affected by a number of different soil properties including clay content, soil water content, varying depths of 
conductive soil layers, temperature, salinity, organic compounds, and metals (McNeill, 1992). On these claypan soil 
fields, soil ECa  is usually highest on eroded side-slopes. Here the claypan is often exposed, therefore the surface will 
have a much higher clay content than other landscape positions. The RS-estimated Veris shallow map nicely modeled 
the spatial pattern of the actual Veris data. As previously stated, the effective measurement depth of the Veris 
shallow system is about 0.3 m, while the other two readings measure to depths of 1 m or more. Since reflectance 
information comes from the soil surface, this better relationship with the shallow EC reading could be expected.  

Soil fertility maps from grid sampling were compared with estimated soil fertility maps from the 4 Landsat-like 
bands of the 2000 image (Figure 6). High pH at the south end of the field (due to lime application several years 
prior) and the diagonal pattern of soil pH were obviously shown on the estimated pH map. CEC is derived from 
other cations, including Mg. The spatial pattern of CEC and Mg had similar trends and matched quite well with each 
estimated map from the Landsat-like bands. Soil organic matter was higher on eroded side-slopes than in other 
landscape positions, and Landsat-like band 1 was able to detect these high organic matter areas. We hypothesize that 
variation in soil clay content (primary factor) and organic matter (secondary factor) are the major soil conditions that 
control the relationship between spectral information and soil ECa. 
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Principal Component Analysis 

PCA has been used for dimensionality reduction of multispectral and hyperspectral images in pattern 
recognition applications and for creating an optimal set of spectral information from a large number of bands. Five 
PCs derived from the 120 HSI bands were correlated with soil ECa and fertility data (Table 2) because five PCs 
explained the vast majority of variance for the soil properties (>98%). The bare soil image from 2000 (dry soil)  
generally showed higher correlations to soil ECa  and soil chemical properties than that of 2001 (wet soil). The 
highest correlations to soil ECa were found between PC 1 and EM38 and Veris deep readings in the 2000 image, and 
between PC 3 and EM38 and Veris deep readings in the 2001 image. The highest correlations to soil chemical 
properties were found between PC 2 and pH, OM, Mg, K, and CEC, and between PC 4 and pH, Mg, K, and CEC in 
the 2000 image. PC 1, which had the most variance of spectral signature, did not represent the soil chemical 
properties very well. Instead, PC 2 and PC 4 explained variability well for CEC, Mg, OM, K, and pH. Within-field 
soil fertility variability maps were made using PC 2 and PC 4 of the 2000 image (Figure 7). It seems clear that both 
approaches, using MR on Landsat-like  bands, and PCA, have the capability to reduce the volume of HSI data and 
show potential for developing relationships with soil property variability. 
 

EC-VRshallow EC-VRdeep EC-EM38

2000 VRshallow = MR (4 LB) 2000 VRdeep = MR (4 LB) 2000 EM38 = MR (4 LB)

EC-VRshallow EC-VRdeep EC-EM38

2000 VRshallow = MR (4 LB) 2000 VRdeep = MR (4 LB) 2000 EM38 = MR (4 LB)

  
Figure 5. Soil EC maps by EM38 and Veris (top) and estimated EC maps (bottom) from MR (multiple regression) 
                models using 4 Landsat-like bands. 
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Table 1. SMLR models using 120 HSI bands and MR models using 4 Landsat-like bands (LBs) for estimating soil 
              electrical conductivity and soil chemical properties from image data. 

April 2000  May 2001 Dependent  
Variables MR model 

for all LBs 
SMLR model for all HSI bands 

  Full model    Conservative model 
 
 

MR model 
for all LBs 

SMLR model for all HSI bands 
   Full model        Conservative model 

(n = 9588) --------------------------------------------------------------   R2   ------------------------------------------------------------- 
EC-EM38 0.33*** 0.56***(621))   0.54***(  9)    0.12*** 0.43***(75)   0.41***(25) 

EC-VRsh 0.37*** 0.55***(66)   0.52***(16)    0.19*** 0.37***(76)   0.35***(34) 

EC-VRdeep 0.36*** 0.50***(58)   0.48***(12)    0.18*** 0.36***(68)   0.34***(26) 

(n = 335)       
pH2) 0.49*** 0.68***(35)   0.64***(24)    0.31*** 0.66***(40)   0.63***(31) 

Mg2) 0.48*** 0.67***(26)   0.64***(17)    0.30*** -2) - 

CEC2) 0.44*** 0.66***(32)   0.63***(22)    0.25*** - - 

K2) 0.36*** 0.59***(24)   0.56***(17)    0.21*** - - 

OM 2) 0.34*** 0.55***(32)   0.52***(25)    0.17*** 0.46***(23)   0.44***(19) 

Ca2) 0.24*** 0.55***(28)   0.52***(21)    0.09*** - - 

P2) 0.17*** 0.39***(25)   0.37***(22)    0.17*** - - 
1) no. of wavelengths included   2) no variable met the 0.15 significance level 
 
Table 2. Relationship between soil EC readings and fertility, and HSI-derived principal components. 

Year 
 

R2 of MR for all PCs 
PC1 PC2 PC3 PC4 PC5 

Variable 2000 2001 2000 2001 2000 2001 2000 2001 2000 2001 2000 2001 

(n = 9588)                               ---------------------------------------------------    r   -----------------------------------------------------------  
EC-
EM38 

0.41*** 0.23*** -0.49*** -0.22*** -0.05*** -0.12*** 0.27*** 0.30*** -0.03** 0.07*** -0.02* 0.21*** 

EC-VRsh 0.19*** 0.02*** -0.30*** -0.07*** -0.02* -0.06*** -0.02 0.06*** -0.05*** 0.05*** -0.02 -0.03** 

EC-
Vrdeep 031*** 0.12*** -0.41*** -0.13*** -0.02 -0.11*** 0.11*** 0.24*** -0.06*** 0.06*** 0.04*** 0.03** 

(n = 335)            

pH 0.39*** 0.28*** 0.05 0.20*** 0.49*** -0.06 0.11* -0.29*** 0.46*** 0.23*** 0.18** 0.15** 

Mg 0.49*** 0.21*** -0.32*** -0.39*** -0.46*** -0.01 -0.10 0.12* -0.39*** -0.10 -0.38*** -0.10 

CEC 0.41*** 0.14*** -0.18** -0.27*** -0.47*** 0.08 -0.14* 0.03 -0.40*** -0.15*** -0.38*** -0.10 

K 0.37*** 0.06*** -0.04 -0.17** -0.42*** 0.11* -0.02 -0.01 -0.33*** 0.02 -0.36*** -0.08 

OM 0.34*** 0.13*** -0.06 -0.25*** -0.45*** 0.16** -0.15** -0.08 -0.21*** -0.03 -0.38*** -0.05 

Ca 0.12*** 0.07*** -0.07 -0.06 -0.13* 0.03 -0.08 -0.23*** -0.09 0.01 -0.26*** -0.01 

P 0.18*** 0.19*** 0.07 -0.06 0.14** 0.25*** 0.12* -0.31*** 0.45*** 0.25*** -0.05 0.11* 

* = 0.05>p>0.01, ** =0.01>p>0.001, *** =p<0.001  
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General Discussion 

pH Mg CEC

pH = MR ( 4 LB ) Mg = MR ( 4 LB ) CEC = MR ( 4 LB )

pH Mg CEC

pH = MR ( 4 LB ) Mg = MR ( 4 LB ) CEC = MR ( 4 LB )

 
Figure 6. Maps of soil fertility from grid sampling (top) and estimated soil fertility maps from 4 Landsat-like 
                bands (bottom) as derived from the 2000 bare soil image. 

PC 4PC 2

pH KCECMg

PC 4PC 2

pH KCECMg

 
Figure 7. Soil fertility maps by grid soil sampling (top) and second and fourth principal component images 
               (bottom) as derived from the 2000 bare soil image.  
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An important question raised through data analysis for both years' HSI was “why did the results differ between 
the two years ?”. Several factors which may have played a part were soil moisture conditions, image quality (mainly 
geometric dis tortion), different atmospheric conditions during image acquisition, and sun positioning.  

Soil moisture conditions were significantly different between the two images. Spectral reflectance of the wet 
soil was lower, had a narrower range and had more deviation from the trend line. Soil moisture measurement and/or 
modeling during bare soil image acquisition may be necessary to better understand relationships between HSI and 
soil properties.   

 A number of potential error sources may have affected the results . Atmospheric models may need to be 
applied to compensate for atmospheric conditions and sun elevation. Sun positioning may also affect reflectance 
because of micro-relief in the field and different topographic aspects, and sun angle correction should be considered. 
The 2001 image was taken on May 9, ten days after planting (76 cm row spacing). Corn had emerged in the field 
and was approximately 5 cm tall, which could have slightly affected the soil spectral profile, though the effects 
should have been minor since 5 m-resolution pixels were selected for this analysis.  

Noise reduction by image degradation worked since it improved the relationship between image data and 
ground sensed data as compared to previous results on part of this data without noise reduction (Hong et al., 2001). 
Especially for airborne images, quality control in terms of signal to noise improvement is an important pre-
processing step for image analysis. A homogeneous area method was used for this study. Other methods could be 
used to characterize signal to noise ratio such as the local means and local variances method and the geostatistical 
method (Van Der Meer et al., 2001). 

 
 

CONCLUSIONS 
 

Several statistical methods – simple correlation, MR, and PCA – were successfully used to relate within-field 
soil information with HSI and Landsat-like bands. HSI signatures of bare soil taken in April 2000 and May 2001 
were correlated with soil ECa and soil chemical properties. Blue wavelengths in the visible region, Landsat-like band 
1, and PC 2 and PC 4 of the HSI data were informative for estimating soil properties. SMLR models using HSI 
showed higher R2 values than did MR models with Landsat-like bands, which demonstrates the value of HSI. But 
Landsat-like images were still quite good, and may be more acceptable for practical application, considering data 
volume, efficiency and overfitting concerns. PC maps using PC 2 and PC 4 also showed good relationships with soil 
pH, Mg, and CEC. While the soil data set did not include texture measurements we have found in other studies on 
claypan soil that CEC and texture is highly correlated (data unpublished). Therfore, it is reasonable to assert that 
reflectance variation for this field is largely a function of surface texture properties, such as noted by others (Barnes 
and Baker, 2000; Thomasson et al., 2001). Both approaches, creating Landsat-like bands and PCA, reduced the 
volume of HSI data and showed potential for developing relationships with soil property variability.  

Using a conservative SMLR model could reduce the chance of overfitting the data as compared to a full SMLR 
model. Estimated soil property maps from remote sensing described the spatial pattern of ground-sensed soil ECa  
and grid-sampled fertility. Many factors, mineral composition, moisture, organic matter, texture, and the like, are 
involved in spectral reflectance of soil. Clearly, soil moisture modeling will  need  further study, especially on 
Missouri claypan soils. However, HSI analysis appears promising for quantifying soil property variability. 
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