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ABSTRACT

This paper describes an algorithm which aims at deriving digital terrain models (DTM) from dense digital elevation
models (DEM). This algorithm takes place in a processing chain for building detection and modelling in urban areas from
high resolution aerial imagery. DEM either come from stereophotogrammetry, or from direct measures such as airborne
laser data. DTM are computed as low order frequency models, which exclude “high frequencies” such as buildings
and other man-made structures. Above-ground regions are then detected by differences between DEM and DTM. Our
processing chain ends with the 3D building modelling.

1 INTRODUCTION

Automatic and semi-automatic extraction of cartographic
objects is a very intensive research field; a lot of inves-
tigations concerns road and building detection and mod-
elling (Grün et al., 1995, Grün et al., 1997, Baltsavias et
al., 2001).

Many applications (urban planning, telecommunication an-
tenna localization, ...) concern urban areas, which are char-
acterized by dense information need, sharp relief disconti-
nuities, large occlusion areas, numerous and various build-
ing sizes, shapes and appearances. An overview and clas-
sification of methods developed in order to deal with such
data and characteristics can be found in (Mayer, 1999).

In this paper, we present an algorithm for deriving digital
terrain models (DTM) from dense digital elevation mod-
els (DEM). This algorithm takes place in our processing
chain for building detection and modelling from high res-
olution aerial image stereopairs (Cord et al., 2001). In sec-
tion 2, we briefly remind our dense DEM computation al-
gorithm, which provides data for DTM estimation; section
3 presents the DTM model and the estimation algorithm;
we provides results on synthesis data, in a quality assess-
ment purpose, as well as on some real data (section 4).

2 DEM COMPUTATION

We developed a specific algorithm for dense elevation map
computation from high resolution aerial stereopairs (Cord
et al., 1999). Such images in urban areas are characterized
by large occlusion areas, large non or poor textured areas,
large disparity intervals. Our algorithm relies on an adap-
tive window cross-correlation matching process, integrated
in a multi-resolution coarse-to-fine approach, with sym-
metric validation at each level of the image pyramids. This
algorithm, initially developed for greylevel stereopairs, has
been extended to colour images (Belli et al., 2000).

As an example, figure 1 shows a dense DEM obtained
with this algorithm, applied to an high resolution aerial
stereopair (images from the IGN digital camera, resolution
about 25cm per pixel, image size is 1700 � 1450).

Figure 1: High resolution aerial stereopair and DEM com-
putation: the DEM geometry is the left image’s one, black
pixels are non matched ones, and brighter greylevels cor-
respond to higher elevations.

3 DTM FROM DEM COMPUTATION

3.1 DTM model

Our processing chain aims at detecting and modelling car-
tographic features such as buildings. After dense DEM



computation, the following step consists in the DTM es-
timation, which will then allow to detect above-ground re-
gions (and especially buildings) from the differences be-
tween the DEM and the DTM. We presented a first version
of our DTM estimation algorithm in (Belli et al., 2001).

The DTM is modelled as a decomposition of order � on a
basis of 2D harmonic functions; the elevation field �����
	���

is written as:������	���
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where the fundamental frequencies 2=3?�A@/B>C�3 and 2/6D�@/B>C�6 are computed from the DTM size C&3E�DC�6 . � is the
model order, and it can be seen as a constraint on the ter-
rain variability. Using such a model, the DEM points either
belong to the DTM or are “outliers” for the DTM compu-
tation (above ground points, i.e. building or vegetation).

3.2 Robust estimation

We developed a robust statistical estimation algorithm in
order to compute the FG�H-!I��J� � @>
�K(LM@ model parameters
from the N DEM points O ��P�	��=PQ	R�!�J�!P�	��=P%
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We build the following matrix equation:�Z�H[\I^] (2)

with: ]H�_O ����� �=	������ V>	 7 �*� V/	*`�`*`a	R� � � � 	 7 � � � Scb[d� efg @ h �*� V �Q@>
 i ��� V ��@^
 `*`�`ji � � � �Q@>
@ ...
...

...
...@kh �*� V ��Nl
�i ��� V ��Nl
j`*`�`mi � � � ��Nl


n*op
where h � � � �JqQ
0�r'*),+*�%-/.0�%1�2 3 � P �54 2 6 � P 
�
 andi � � � ��qQ
0�s+�9;:&�<-(.0�<1�2 3 � P �t4 2 6 � P 
�
 .
The resolution scheme of this over-determined ( NvuwF )
system is based on the M-estimators theory, which con-
sists in iteratively reducing the influence of outliers (above-
ground points). The optimal solution ]yx computation in-
volves the minimization of a function z of the error {a|}�Jq~

on axis ��� between data ������P�	��,P<
 and model �<[\I>]�
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In a first version of our algorithm, we used the Tukey’s
norm as z function ( � is a scale factor):z����J��
���� �T�� �Q@}L��Q@�L�� 3 � 
�K�
Q�>
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The weight function � � corresponding to this norm is:�}�^�J��
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 K 
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The numerical resolution scheme lies on the solution of the
matrix form of the iterated equation (for iteration 1 ) until
convergence:�]Z� �#� ���%[ bW� � �#�� [�
#  V [ bW� � �#�� � (4)

with � � �a�� �A¡=q~�,¢���� � �<{ � �   V �| 
�
 the diagonal weight ma-
trix.

However, our problem is not a symmetric one; on the op-
posite, we could consider that all DEM points which have a
negative error { � �   V �| are likely to be ground points. So we
developed a resolution scheme based on an “asymmetric
Tukey’s norm” and the associated weight function:� � �J��
���£¤ ¥ @ if �?� ��Q@�L�� 3 � 
 K 
 K if
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otherwise

In the following section, we present results obtained with
this model from synthesis data in various ground and above-
ground configurations.

4 RESULTS ON SYNTHESIS DATA

4.1 Synthesis data

The first element of our synthesis data is a synthesis DTM�����
	���
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 where the
coefficients � � � � are randomly chosen (fig. 2, left).

We add on this DTM a certain number of “flat roof build-
ings” (fig. 2, right, example with 6 “buildings”), and finally
some Gaussian noise modelling stereo-matching errors.

Figure 2: Synthesis DTM (left) and DEM (right).

The parameters of our synthesis DEM are then:« the order � and the coefficients of the DTM;« the number of buildings and their sizes (width, length
and height);« the Gaussian noise standard deviation ¬ .

We tested our DTM estimator on various configurations of
buildings (number, heights, and ratio between ground and
above-ground points), and with different values of ¬ . We
have also assessed the influence of the Tukey’s norm scale
factor � .



4.2 Evaluation

In the following paragraphes, we present some assessments
of our algorithm with these synthesis data. In order to do
easiest comparisons, we generally present some DEM and
DTM line and/or column profiles ; along these profiles, the
reference DTM is light blue, the DEM is dark blue and the
DTM estimation is red.

Tukey’s scale factor � : this factor controls the weight-
ing of DEM points for the DTM estimation: the bigger � ,
the bigger � � �J��
 , and the less selective our estimator. The
estimation strategy consists in starting with a few selective
estimator (with a great value of � ), and we progressively
select less and less points, by decreasing the � value. We
found experimentally — and thus confirm our initial intu-
ition — that the value of � Y­P�® should be about the height
of the lowest above-ground structure that we want to reject
from the DTM. It makes no sense for �*Y}¯#3 to be greater
than the DEM height amplitude, and we used experimen-
tally about 20 values of � from � Y}¯#3 to � Y­P�® .

Gaussian noise standard deviation: we added Gaus-
sian noise with standard deviation ¬ between

� ` and -�` °
(the DTM height amplitude of our synthesis data is about± ` units and the “building” heights between

� ` ° and @,` ±
units). The curves on figure 3 shows the mean quadratic
error of DTM estimation (i.e. the difference between ref-
erence DTM and estimation) for several estimators (differ-
ent values of � , weight functions are either the original
Tukey’s norm or the asymmetric one).

Figure 3: Mean quadratic error of DTM estimation against
Gaussian noise standard deviation, for several estimation
modes and strategies.

This figure does not allow us to make difference between
estimators against the Gaussian noise, provided that the
value of ¬ is less than the building heights... For greater
values of ¬ , performances decrease fast (curves for ¬³²�-�`
have no real signification, because this noise amplitude
does not allow to distinguish between “terrain” and “build-
ings”).

Height of buildings: we tested various ratios between
building heights, DTM amplitude and Gaussian noise stan-
dard deviation. Figure 4 shows line and column profiles for
small values of building height (building height and DTM
amplitude have about the same value); figure 5 shows pro-
files for another configuration, where buildings have very
different heights from each other.

Figure 4: Line and column profiles for low buildings.

Figure 5: Line and column profiles for buildings having
different heights.

Both cases — and the other ones which are not presented
here — show that the DTM estimation quite well fits the
reference DTM.

Number of buildings: we added 3, 6 and 10 buildings
on our reference DTM (figures 6 and 7 for 3 and 10 build-
ings respectively). For all these configurations, the mean
accuracy is about °ZI,@ �   K . The number of buildings, and
the ratio between ground and above-ground points (under
the limit of 50%, the terrain model makes less sense) does
not seem to be a critical parameter.

4.3 Results on real data

We used our algorithm to compute DTM from real images
from the IGN digital camera. Figure 8 shows such a DTM;
the reference color image is presented on the left; on the
DEM shown at center of the figure, altitudes grow from
dark blue to red, and one clearly perceive the terrain slope
in the North-South direction. The 3D perspective view of
the DEM (left of the figure) makes the terrain slope more
clearly visible.

5 CONCLUSION

We have presented here an improved version of our algo-
rithm for DTM estimation from dense DEM. This algo-
rithm is based on a DTM model as a sum of harmonic func-
tions, and robust M-estimators are used to iteratively select
ground points and compute the DTM model. It has been
tested with synthesis data, and DTM estimation seems quite
robust with very different DEM configurations. We have
then successfully applied it to dense DEM computed from
aerial stereo images matching in urban areas. However,
our algorithm could also be applied to other data such as
airborne laser DEM.

After this process, the difference between the DEM and
the DTM provides a “relative DEM”, which we are able
to segment in order to extract above-ground objects (build-
ings and trees).



Figure 6: Assessment with 3 buildings: DEM (top), col-
umn 153 profile (center) and line 207 profile (bottom).
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which provided high resolution aerial images from its new digital
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